Design of Selective Thrombin Inhibitors Based on the (R)-Phe-Pro-Arg Sequence

J ohn C. Danilewicz, ${ }^{\dagger, \ddagger}$ Stuart M. Abel ${ }^{\S}$ Alan D. Brown, ${ }^{\ddagger}$ Paul V. Fish, ${ }^{*, \ddagger}$ Edward Hawkeswood, ${ }^{\|}$ Stephen J. Holland," Keith J ames, \ddagger Andrew B. McEIroy, \ddagger J ohn Overington, ${ }^{\perp}$ Michael J. Powling," and David J. Rance ${ }^{\S}$
Departments of Discovery Chemistry, Drug Metabolism, Discovery Biology, and M olecular Informatics Structure and Design, Pfizer Global Research and Development, Sandwich, Kent CT13 9NJ, United Kingdom

Received December 21, 2001

Abstract

Potent and selective inhibitors of thrombin were sought based on the (R)-Phe-Pro-Arg sequence. The objective was to generate similar binding interactions to those achieved by potent competitive inhibitors of the argatroban type, so eliminating the need for covalent interaction with the catalytic serine function, as utilized by aldehyde and boronic acid type inhibitors. Improving the S_{1} subsite interaction by substitution of arginine with a 4-alkoxybenzamidine residue provided potent lead $2\left(\mathrm{~K}_{\mathrm{i}}=0.37 \mathrm{nM}\right)$. Though an amide bond, which H -bonds to the active site, is lost, modeling indicated that a new H -bond is generated between the alkoxy oxygen atom and the catalytic Ser-195 hydroxyl group. Substitution of the benzamidine system by 1 -amidinopiperidine then gave compound $\mathbf{4}$, which provided a further gain in selectivity over trypsin. However, previous work had shown that these compounds were likely to be too lipophilic (Log D +0.4 and +0.2 , respectively) and to suffer rapid hepatic extraction, presumably via biliary elimination. Accordingly, both proved short-acting when administered intravenously to rats and showed poor activity when given intraduodenally. The aim was then to reduce lipophilicity below a $\log \mathrm{D}$ of -1.2 , which in a previously reported series had been effective in preventing rapid clearance. It was anticipated that compounds of this type would rely on the cation selective paracellular route of absorption from the gastrointestinal tract. Potent polar analogues with selectivity > 1000 over trypsin were obtained. The best in vivo activity was shown by compound 12. However, in the final analysis, its oral bioavilability proved poor, relative to analogues with similar physicochemical properties derived from argatroban, consistent with the hypothesis that molecular shape is an additional important determinant of paracellular absorption.

Introduction

The search for potent selective and orally active thrombin inhibitors has gathered momentum in recent years. ${ }^{1}$ Thrombin is the last in a cascade of trypsin-like plasma serine proteases, which by catalyzing the conversion of fibrinogen to fibrin, activation of FXIII and inducing platelet aggregation is a key enzyme in haemostasis and thrombus formation. The inhibition of a single enzyme in the cascade, and in particular thrombin, has been an attractive goal in that it could also provide superior antithrombotic therapy by increasing efficacy and safety as compared to heparin and the coumarins. Additionally, by keeping molecular size small, the opportunity exists for obtaining oral activity. ${ }^{1,2}$
Two small molecular weight inhibitor types are emerging as structure-activity relationships are explored. The first is of the argatroban ${ }^{3}$ and NAPAP ${ }^{4}$ type (Chart 1), where lipophilic groups on either side of the

[^0]basic P_{1} side chain pack together to interact with the hydrophobic S_{2} site. ${ }^{5-7}$ Napsagatran (Ro 46-6240), developed by Hilpert et al.,8 though having a more complex P_{1} residue, can nevertheless be viewed as belonging to this group. The only interaction with the catalytic serine residue is via a hydrogen bond to the carboxylate function in both argatroban and napsagatran. Unfortunately, none of these compounds is orally active due to either poor absorption from the gastrointestinal tract and/or rapid clearance via the bile. ${ }^{4,9}$
A second inhibitor type is based on the substratederived irreversiblechloromethyl ketone inhibitor PPACK and includes compounds such as DuP-714 ${ }^{10,11}$ and efegatran (GYKI-14 766). ${ }^{12}$ These compounds interact covalently with the hydroxyl group of the catalytic serine residue. The neighboring proline ring and (R)Phe side chain cooperate to fill the S_{2} site in a similar fashion as the two distal lipophilic groups of the first series. ${ }^{5}$ Though oral activity has been claimed for these compounds, we were concerned that high enzyme selectivity might not be obtainable when substantial affinity is derived by interacting covalently with the ubiquitous active site serine function. In the case of aldehyde type inhibitors, there is also the potential problem of achieving adequate optical and chemical stability.

Chart 1

argatroban

napsagratran

NAPAP

PPACK
DuP-714
$\mathrm{R}=\mathrm{Ac} ; \mathrm{X}=-\mathrm{B}(\mathrm{OH})_{2}$
$\mathrm{R}=\mathrm{H} ; \mathrm{X}=-\mathrm{COCH}_{2} \mathrm{Cl}$
$\mathrm{R}=\mathrm{Me} ; \mathrm{X}=-\mathrm{CHO}$

inogatran

Subnanomolar potency and oral bioavailability have been obtained with "fol ded" inhibitors of the argatroban type, e.g., UK-154 606. ${ }^{13}$ We considered that these properties might be equally well-combined in "linear" PPACK-derived structures but ones in which the reactive functionality was deleted to ensure competitive kinetics and to enhance the potential for high selectivity.

While our work was in progress, ${ }^{14}$ two series, which included inogatran ${ }^{15}$ and compound $\mathbf{1},{ }^{16}$ were published. Inogatran is reported to have a K_{i} of 15 nM against human thrombin, which gave encouragement that the above objective should be achievable. We describe here our own work on this approach.

Compound Design

In their early studies on aryl amidines, Markwardt et al. ${ }^{17}$ showed that simple 4-alkoxyphenylamidines possess significant thrombin and trypsin inhibitory activity, with K_{i} values in the $5 \times 10^{-5} \mathrm{M}$ region. We, therefore, sought to determine how such a P_{1} side chain might be incorporated into a linear inhibitor type. The published complex of human thrombin with PPACK ${ }^{18}$ (PDB ${ }^{19}$ code 1PPB) was used as a basis for modeling studies. The covalent linkage to Ser 195 and His 57 along with the bridging methylene was removed by modeling, and the resulting noncovalently bound com-

Table 1

${ }^{\text {a }}$ Calculated from the measured value for $\mathbf{5}$ using Rekker fragmental constants.
plex was minimized using the CHARMM program. ${ }^{20}$ The histidine and serine residues adopted conformations closer to those observed for the remainder of the serine proteinase family and to those observed in thrombin complexes with noncovalently bound inhibitors, ${ }^{5,6}$ while the inhibitor backbone and side chains maintained similar interactions with the enzyme. When the complex of benzamidine with human thrombin (PDB code 1DWB ${ }^{18}$) was examined with respect to this model, it showed that a 4-oxy substituent would be best joined via a two carbon link to the proline pyrrolidine ring. Such a modification would result in loss of an amide linking group, the NH of which, in PPACK, is H -bonded to the Ser-214 carbonyl function of thrombin. Initially, we argued that loss of this interaction might, in large measure, be compensated for by a reduction in desolvation energy on active site entry. However, it appeared from our model that a new H -bond between the alkoxy oxygen atom and the catalytic Ser-195 hydroxyl group was also possible. These considerations led to the design of compound $\mathbf{2}$, but because racemic 2-(2-hydroxyethyl)piperidine was used as starting material, the diastereoisomer $\mathbf{3}$ was also obtained. The more active isomer $\mathbf{2}$ proved highly potent and was assigned the S configuration on the basis of the modeling studies.

Very interestingly, Hilpert et al. ${ }^{8}$ had shown that 1-amidinopiperidine is intrinsically more selective than benzamidine for thrombin and used this finding to produce their novel napsagatran series, which has high thrombin/trypsin selectivity. 1-Amidinopiperidine was therefore docked into the P_{1} pocket, which showed that this system could effectively replace the benzamidine fragment. This resulted in the design of compound 4. High potency was indeed retained, with a further small gain in selectivity, taking into account that 4 is a mixture of diastereoisomers (Table 1). It is of note that a related alkoxy 1-amidinopiperidine P_{1} group has been

Figure 1. Prolongation in TT on iv administration of compound $\mathbf{2}$ to rats at $1 \mathrm{mg} / \mathrm{kg}$; means $\pm \mathrm{SEM}, \mathrm{n}=4$.
successfully employed by Soll et al. in a different inhibitor template. ${ }^{21}$

In a previous paper, ${ }^{13}$ it was shown that compounds of this type require a degree of polarity, with $\log \mathrm{D}$ values less than or equal to -1.2 , to minimize hepatic extraction and so allow some oral bioavailability. Absorption of such polar compounds from the gastrointestinal tract is then presumably achieved by the paracellular route. When given intravenously (iv) to rats, compound 2 showed only a moderate duration of action, as indicated by the rel atively rapid decline in thrombin time (TT) in Figure 1, when compared with similarly potent inhibitors that have good pharmacokinetics. ${ }^{13}$ Prolongation of TT was routinely used for in vivo compound evaluation as a more sensitive measurement of activity than the more commonly used activated partial thromboplastin time (APTT). Little activity was also evident at a standard dose of $10 \mathrm{mg} / \mathrm{kg}$ given intraduodenally (idd), as shown in Figure 2. Thus, the in vivo profile was indeed indicative of too rapid a clearance, which was consistent with a measured $\log \mathrm{D}$

Figure 2. Prolongation in TT on idd administration of compound $\mathbf{2}$ to rats at $10 \mathrm{mg} / \mathrm{kg}$; means $\pm \mathrm{SEM}, \mathrm{n}=4$.
of +0.4 . Compound 4 , with a $\log D$ of +0.2 , showed a similarly poor duration of action when given iv to rats at $1 \mathrm{mg} / \mathrm{kg}$. Replacement of the cyclohexyl ring by a phenyl ring as in compound 5 reduced $\log \mathrm{D}$ to -1.1 , which is in our desired range, but potency fell sharply showing the importance of the hydrophobic interaction with the S_{2} site.

Our objective was then to modify the N -carboxy-methyl-(R)-cyclohexylalanine (Cha) fragment so as to achieve a substantial reduction in lipophilicity. N -alkyl aspartic acid derivatives were sel ected for study (Table 2), as this residue satisfied four requirements. First, the N atom would provide a proton (even when tertiary, if protonated), which modeling predicted could still interact with the Gly-216 residue. The thrombin-PPACK X-ray crystal structure ${ }^{5,18}$ shows that the (R)-Phe carbonyl and amino groups form antiparallel H bonds to the corresponding amido and carbonyl functions of Gly216. Second, the total lipophilicity contribution of the alkyl substituent would be reduced if brought under the close influence of a protonated N atom. Third, a free carboxyl group, which appears to be important for good in vivo toleration, as discussed below, would be retained, and fourth, a net positive charge would be maintained, so favoring absorption by the paracellular route, which is cation selective. ${ }^{22}$ An important consideration, however, is that it would be necessary to invert stereochemistry and to use (S)-aspartic acid, so that the relative orientation of lipophilic and carboxyl groups in compound 4 would be preserved.

The N-cydohexyl analogue 7 was the first to be synthesized and showed a promising level of activity. The cyclopentyl analogue 8 was inferior, but further small gains in potency were possible by increasing ring size as in compounds 9 and 10, taking into account that some compounds were prepared as mixtures of diastereoi somers, one of which was assumed to be only weakly active (cf. compounds 2 and 3). Activity was retained on "opening" the ring as with the 3-pentyl analogue 11. Because the N substituent is presumed to extend into the hydrophobic S_{2} site, the effect of further substitution was examined. N-methylation gave a small increace in potency (compounds 12 and 13), but introduction of an ethyl group resulted in loss of activity (compound 17). Large polar groups such as dimethylaminoethyl were detrimental. The introduction of a double bond into the cycloalkyl group maintained potency as in compound 14. Attempts to further extend the hydrophobic interaction,

Figure 3. Prolongation in TT on iv administration of compound $\mathbf{1 2}$ to rats at $1 \mathrm{mg} / \mathrm{kg}$; means \pm SEM, $\mathrm{n}=4$.
as in the cyclohexylmethyl and benzyl analogues $\mathbf{1 5}$ and 16, reduced potency. Similarly, introduction of a heteroatom as in compounds 19-21 was detrimental. Extension of the carboxylic acid side chain as in the glutamic acid analogue 22 (Table 3), which more closely mimicked compound 4, reduced selectivity as compared to the corresponding aspartic acid analogue 12 and offered no in vivo advantage.

In their pioneering work on thrombin inhibitors, the group at Mitsubishi ${ }^{23,24}$ showed that the incorporation of a carboxyl group, as in argatroban, was important to improve compound toleration. We showed a similar effect in a related series of phenylamidine-derived inhibitors, ${ }^{13}$ the carboxyl group being in the same relative position in both series, forming an H bond to the catalytic serine residue. The same phenomenon appeared to operate in this current series. Compound 6 (Table 3) was lethal when given iv to rats at $1 \mathrm{mg} / \mathrm{kg}$. In contrast, compounds $\mathbf{2}$ and $\mathbf{1 2}$ were tolerated at 30 $\mathrm{mg} / \mathrm{kg}$ when given iv to mice. It is apparent that the carboxyl group in these latter compounds is positioned quite differently than in the argatroban-derived series. Thus, all that may be required is the mere physical presence of a carboxyl group anywhere in the molecule, that is compatible with thrombin inhibitory activity, to improve toleration.
The more active compounds were evaluated in vivo, and the best responses, shown in Figures 3 and 4, were obtained with compound $\mathbf{1 2}$. Compound $\mathbf{1 3}$ gave a lesssustained response when given idd to rats. Therefore, despite reduced in vitro potency, compound $\mathbf{1 2}$ exhibited an in vivo profile that is clearly superior to that of compound 4 (Log D +0.2). The log D of $\mathbf{1 2}$ was found to be -1.8 . Thus, again, a reduction in lipophilicity is seen to be beneficial in improving in vivo activity.

The selectivity of compound $\mathbf{1 2}$ was examined against a representative selection of thrombin-related enzymes, as can be seen from Table 4. Relatively low activity was evident against factor (F) Xa, plasmin, and FVII a, with selectivities of >1000 being achieved. Selectivity against trypsin was slightly lower (900×), though values > 1000× were achieved with compounds 13 and 14.

Enzyme-Inhibitor Binding

Details of the interactions of PPACK with thrombin have been described in detail. ${ }^{18}$ However, briefly, as shown in Figure 5, aside from the covalent bonds formed to Ser 195 and His 57, a substratelike, antiparallel

Table 2

				Thrombin	Trypsin	Selectivity
Compound	$*$	R^{1}	R^{2}	$\mathrm{Ki}(\mathrm{nM})$	Ki (nM)	Tryp/Throm

[^1]β-sheet type interaction is formed between the peptide backbone of PPACK and the mainchain of the enzyme (NH of P_{1} Arg to carbonyl of Ser 214, carbonyl of $\mathrm{P}_{3}(\mathrm{R})$ Phe to amide of Gly 216, and amino terminus of P_{3} with carbonyl of Gly 216). The carbonyl of P_{2} Pro is exposed to solvent in the complex. The guanidine of the P_{1} Arg residue forms an "end-on" salt bridge to Asp 189 of the
enzyme and, further, hydrogen bonds to the carbonyl of Gly 219 and also to a "conserved" buried water molecule at the base of the P_{1} pocket. The methylenes of the pyrrolidine ring of P_{2} Pro are cradled under a hydrophobic lid formed by the aryl portions of Tyr 60A and Trp 60D, from the loop insertion unique to thrombin. It is this unique loop that is thought to be

Table 3

Figure 4. Prolongation in TT on idd administration of compound $\mathbf{1 2}$ to rats at $10 \mathrm{mg} / \mathrm{kg}$; means $\pm \mathrm{SEM}, \mathrm{n}=3$.
responsible for a large part of the selectivity of thrombin in vivo. The (R)-Phe residue binds into a hydrophobic pocket formed by Leu 99, Ile 174, and Trp 215.

A model of compound $\mathbf{1 2}$ bound to the active site of human thrombin was built using PPACK as the template and the modeling program QUANTA. ${ }^{25}$ The model was refined by energy minimization techniques and

Table 4. Enzyme Inhibition Profile of Compound 12

enzyme	${\text { calcd } \mathrm{K}_{\mathrm{i}}}^{\text {thrombin }}$
trypsin	$2.17 \pm 0.09 \times 10^{-9} \mathrm{M}$
FXa	$1.93 \pm 0.12 \times 10^{-6} \mathrm{M}$
plasmin	$4.97 \pm 0.24 \times 10^{-6} \mathrm{M}$
FVIIa	$3.30 \pm 0.15 \times 10^{-5} \mathrm{M}$

restrained molecular dynamics simulations, selected water molecules from the thrombin-PPACK complex structure that were included in the calculations (Figure 6). As in PPACK, a series of important "backbone" interactions are formed, despite the fact that 12 only contains one peptide bond. The proton associated with the tertiary amine (which we assume is protonated at physiological pH) interacts with the carbonyl of Gly 216, while the amide carbonyl of $\mathbf{1 2}$ forms a hydrogen bond with the amide proton of Gly 216. The hydrogen bond corresponding to that from the P_{2} residue of PPACK is absent in 12, with the carbonyl of Ser 214 now partially exposed to solvent; however, a new hydrogen bond would appear to be formed between the ether oxygen of 12 and the active site residue, Ser 195. As discussed above, it is possible that the formation of this hydrogen bond compensates for the loss of the preceding main chain interaction. A further interaction to the main chain of thrombin is formed by one of the carboxylate oxygens, corresponding to a substrate-like main chain interaction for a P_{4} residue.

The guanidine of $\mathbf{1 2}$ forms an end-on salt bridge interaction with Asp 189 at the base of the P_{1} pocket, with further required hydrogen bonds observed to the backbone carbonyl of Gly 219 and a water molecule bound at the base of the P_{1} pocket, as with PPACK. The methylene atoms of the piperidine ring, however, form extensive van der Waals interactions with the remaining hydrophobic parts of the P_{1} pocket. It is interesting to note that there is a sequence difference between

Figure 5. Stereoview of active site of human thrombin-PPACK thrombin complex (PDB code 1PPB), showing binding mode of PPACK (thick lines). Hydrogen bonds are indicated by dotted gray lines. Residues in thrombin are labeled according to established numbering conventions.

Figure 6. Stereoview of modeled binding of $\mathbf{1 2}$ to active site of human thrombin. See legend to Figure 5 for further details.
trypsin and thrombin (Ser 190 in trypsin is Ala in thrombin) in the P_{1} pocket that favors the binding of more lipophillic ligands in the P_{1} pocket of thrombin, and this gives rise to some of the observed thrombin selectivity of $\mathbf{1 2}$.

The binding in the aryl pocket is quite distinct to that observed in PPACK. The cyclohexyl group shows extensive hydrophobic contacts with Trp 215, Leu 99, and Ile 174, and the N-methyl group extends this pattern of hydrophobic interactions, primarily increasing interactions with Ile 174. This area is more polar in trypsin (the residue corresponding in position to lle 174 is a glutamine residue), and so, the additional hydrophobic interactions possible in thrombin contribute to the observed enhanced potency and selectivity. Extending the methyl group tolarger alkyl groups would affect the conformation of the essential acid moiety and start to shield polar atoms of thrombin from contact with solvent, consistent with the observed loss of potency on extending this group.

Chemistry

The methods for the synthesis of the inhibitors disclosed in Tables 1-3 (compounds 2-22) are described in Schemes 1-6. Phenylamidines 2, 3, and 6 were prepared as outlined in Scheme 1. Compound 23 was reacted with 4-cyanophenol under Mitsunobu conditions ${ }^{26}$ to give the phenyl ether 24. Removal of the Bocprotecting group using trifluoroacetyl (TFA) in the presence of anisole, as a carbonium ion scavenger, gave amine 25. Coupling with the acid chloride of N -Troc-(R)-Cha then gave the diastereoisomers 26 and 27, which were readily separated by chromatography on silica. Removal of the Troc-protecting group with zinc ${ }^{27}$ afforded amines 28 and 29. Reaction with ethyl bromoacetate, followed by the sequential treatment with ethanolic HCl and ethanolic ammonia (Pinner reaction ${ }^{28}$), gave amidines 32 and 33 . Hydrolysis with NaOH followed by acidification then gave the diastereoisomers

2 and 3. The more active was assigned the S configuration on the basis of the computer modeling studies described above, the R diastereoisomer showing the much poorer fit. Diimide coupling of $\mathbf{2 5}$ with N-Cbz-(R)-Phe-OH afforded compound 60. Treatment of $\mathbf{6 0}$ with ethanolic HCl , to form the imidate, resulted only in partial simultaneous removal of the Cbz-protecting group. Thus, when the product was treated with ammonia, a mixture of 6 and its N -Cbz derivative, which were readily separable by chromatography, was obtained.

The guanidine analogues 4 and 5 were prepared as shown in Schemes 2 and 3. N-Cbz-2-(2-hydroxyethyl)piperidine 35b was converted to the methanesulfonate 36b, which was reacted with the Na alkoxide of N -Boc-4-hydroxypiperidine in dimethylformamide (DMF) to give the ether $\mathbf{3 7 b}$ (Scheme 2). Hydrogenolysis of the Cbz-protecting group and reaction of amine 41 with the acid chloride of N -Troc-(R)-Cha gave 42 (Scheme 3). Removal of the Boc-protecting group and reaction of amine $\mathbf{4 3}$ with N, N '-di-t-butoxycarbonyl-S-methylisothiourea ${ }^{29}$ then gave bis-Boc-protected guanidine 44. We found, however, that inclusion of mercuric chloride greatly facilitated this reaction and improved yields. Removal of the Troc-protecting group with zinc, as described above, gave 45, which on reaction with tertbutyl bromoacetate and acid treatment, gave compound 4 as a mixture of diastereoi somers.

Removal of the Boc-protecting group from 37b (Scheme 2), foll owed by reaction of the resultant amine $\mathbf{3 8 b}$ with N,N'-di-t-butoxycarbonyl-S-methylisothiourea gave bis-Boc-protected guanidine 39b in good yield. Hydrogenolysis of the Cbz-protecting group gave 40b, which on coupling with N-F moc-(R)-Phe-OH, using PyBroP, ${ }^{30}$ gave 47. Removal of the F moc-protecting group with piperidine and reaction of 48 with tert-butyl bromoacetate, followed by acid treatment, gave 5 as the hydrochloride salt.

Compound 34b was resolved as the (1S)-(+)-10camphorsulfonic acid salt, ${ }^{31,32}$ the absolute configuration

Scheme $1^{\text {a }}$

a Reagents: (a) $\mathrm{Boc}_{2} \mathrm{O}$, EtOAc; (b) 4 -cyanophenol, DEAD, PPh_{3}, THF; (c) TFA, $\mathrm{PhOMe}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (d) Troc-D-Cha-CI, DIPEA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (e) chromatographic separation of diastereoisomers; (f) $\mathrm{Zn}, \mathrm{KH}_{2} \mathrm{PO}_{4}, \mathrm{THF}$; (g) $\mathrm{BrCH}_{2} \mathrm{CO}_{2} \mathrm{Et}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeCN}$; (h) HCl and then NH_{3}; (i) NaOH then HCl ; (j) Cbz-D-Phe-OH, WSCDI, $\mathrm{HOBt}, \mathrm{NMM}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$.
of which was confirmed as S by single-crystal X-ray crystal lographic analysis. The free base 34a was then elaborated, in a manner similar to 34b, to give 40a. Both 40a,b were coupled with N-F moc-(S)-aspartic acid
β-tert-butyl ester to give 50a,b (Scheme 4). Removal of the F moc-protecting group, followed by reductive amination with a range of ketones and aldehydes, gave 52a-I. Acid treatment then gave $\mathbf{7 - 1 1}, 15,16,19$, and

Scheme $\mathbf{2 a}^{a}$

${ }^{\text {a }}$ Reagents: (a) CbzOSuc, TEA; (b) MsCI, TEA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (c) N-Boc-4-hydroxypiperidine, NaH , DMF; (d) $\mathrm{HCl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (e) MeSC(=NBoc)NHBoc, HgCl_{2}, TEA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (f) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{EtOH}$; (g) Fmoc-D-Phe-OH, PyBroP, DIPEA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (h) piperidine, THF; (i) $\mathrm{BrCH}_{2} \mathrm{CO}_{2} \mathrm{tBu}^{2}, \mathrm{~K}_{2} \mathrm{CO}_{3}$, MeCN ; (j) $\mathrm{HCl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$.
21. Methylation of $\mathbf{5 2 c} \mathbf{c}, \mathbf{g}, \mathbf{k}$, followed by acid treatment, gave 12-14 and 20.

Compound 52a was also alkylated with acetal dehyde and 2-chloroethyldimethylamine to give 54 and 55,

Scheme 3^{a}

${ }^{\text {a }}$ Reagents: (a) $\mathrm{Pd} / \mathrm{C}, 1,4$-cyclohexadiene, EtOH; (b) Troc-D-Cha-CI, DIPEA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (c) $\mathrm{HCl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (d) $\mathrm{MeSC}(=\mathrm{NBoc}) \mathrm{NHBoc}, \mathrm{HgCl}_{2}$, TEA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (e) $\mathrm{Zn}, \mathrm{AcOH}$; (f) $\mathrm{BrCH}_{2} \mathrm{CO}_{2} \mathrm{tBu}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeCN}$.
respectively, which on acid treatment afforded the acids 17 and $\mathbf{1 8}$ (Scheme 5). Reaction of 40a with N-F moc-(S)-glutamic acid γ-tert-butyl ester gave 56 as shown in Scheme6. Reaction of 56 in a manner similar to that shown in Scheme 4 then gave the glutamic acid analogue 22.

Pharmacokinetics and Disposition

The pharmacokinetics of compound $\mathbf{1 2}$ were examined in detail and compared with one of our best benzamidine analogues, 61 (UK-179 094). ${ }^{13}$ As can be seen in Table 5 , following iv administration of $\mathbf{1 2}$, volumes of distribution at steady state were 0.31 and $0.53 \mathrm{~L} / \mathrm{kg}$ for rat and dog, respectively. Corresponding plasma clearance values were 21.1 and $6.4 \mathrm{~mL} / \mathrm{min} / \mathrm{kg}$, and β-elimination half-life values were 0.8 and 1.0 h in rat and dog, respectively. Renal elimination of unchanged drug was
substantial in both rat (39% of the iv dose) and dog (21\%). The overall iv pharmacokinetic profiles for $\mathbf{1 2}$ and 61 are therefore very similar (Table 5). In particular, non-renal clearance is low with respect to hepatic blood flow for both compounds in both species, indicating very little first-pass extraction. However, after oral administration, the bioavailability of compound $\mathbf{1 2}$ was found to be only 2% in the rat and 9% in the dog, indicative of very low absorption. These poor results contrasted markedly with the corresponding values of 16 and 37% obtained with compound 61. We were particularly concerned as our experience indicated that for polar compounds absorbed by the paracellular route, the rat is likely to be the more predictive species for man. Compounds $\mathbf{1 2}$ and $\mathbf{6 1}$ have similar physicochemical properties [12: $\mathrm{M}_{\mathrm{w}} 465.6, \log _{7.4}-1.8, \mathrm{pK}_{\mathrm{a}} 8.8$ (second basic center); 61: $\mathrm{M}_{\mathrm{w}} 553.7$, $\log \mathrm{D}_{7.4}-1.8, \mathrm{pK}_{\mathrm{a}} 8.0$

Scheme $4^{\text {a }}$

b

7-11,15,16,19,21

$\mathbf{5 2}$ or $\mathbf{5 3}$	$*$	R
a	$R S$	cyclohexyl
b	$R S$	cyclopentyl
c	S	cycloheptyl
d	$R S$	cyclooctyl
e	S	3-pentyl
f	S	cyclohexyl
g	S	1-cyclohept-4-enyl
h	$R S$	cyclohexylmethyl
i	S	benzyl
j	$R S$	4-tetrahydropyranyl
k	S	3-tetrahydropyranyl
l	$R S$	N-methyl-4-piperidinyl

a Reagents: (a) F moc-L-Asp(OtBu)-OH, PyBroP, DIPEA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (b) piperidine, THF; (c) ketone, $\mathrm{NaBH}(\mathrm{OAc})_{3}, \mathrm{AcOH}, \mathrm{THF}$; (d) aldehyde, $\mathrm{NaBH}(\mathrm{OAc})_{3}, \mathrm{THF}$; (e) $37 \% \mathrm{HCHO}(\mathrm{aq}), \mathrm{NaBH}(\mathrm{OAc})_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (f) $\mathrm{HCl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$.
(second basic center)]; they have the same Log D values, and $\mathbf{1 2}$ even has the potential advantage of the lower molecular weight. However, the second basic pK_{a} of $\mathbf{1 2}$ is a little greater than that of 61, but because we believe that these inhibitors are absorbed by the paracellular route, that is through aqueous channels, we would not expect that small differences in the degree of ionization would influence absorption from the gastrointestinal tract. We conclude that molecular shape, which is influenced by folding, may be the determining factor.

Conclusion

We have successfully developed a series of highly potent and selective thrombin inhibitors, based on the (R)-Phe-Pro-Arg sequence, without recourse to covalent receptor interaction. By adjusting polarity and the incorporation of a carboxyl group, presystemic clearance has been minimized and toleration has been improved. However, the best compound of the series, 12 (UK285 954), showed Iow oral bioavailability as compared

Scheme 5^{a}

Table 5. Pharmacokinetic Parameters for Compounds $\mathbf{1 2}$ and 61 in Rat and Dog

parameter	rat		dog	
compd	12	61	12	61
iv dose level ($\mathrm{mg} / \mathrm{kg} \mathrm{)}$	10	10	1	1
clearance ($\mathrm{mL} / \mathrm{min} / \mathrm{kg}$)	21.2	11	6.4	6.9
volume of dist (L/kg)	0.31	0.60	0.53	0.53
α-elim half-life (h)	0.12		0.16	
β-elim half-life (h)	0.8	0.8	1.0	0.90
po dose level (mg/kg)	50	50	10	2
oral bioavailability (\%)	2	16	9	37

to our most successful examples of benzamidine type inhibitors, such as 61 (UK-179 094). We conclude that the optimization of physicochemical parameters is insufficient and that molecular size and shape also appear to be important in allowing absorption of polar compounds from the gastrointestinal tract by the paracellular route.

Experimental Section

Chemistry. The abbreviations used are as follows: $\mathrm{Boc}_{2} \mathrm{O}$, di-tert-butyl dicarbonate; CbzOSuc, N-(benzyloxycarbonyloxy)succinimide; Cbz-D-Phe-OH, N-benzyl oxycarbonyl-(R)-phenyl-
alanine; DEAD, diethyl azodicarboxylate; DIPEA, diisopropylethylamine; DMAP, 4-(dimethylamino)pyridine; Fmoc-Asp-(OtBu)-OH, N - α-fluorenylmethoxycarbonyl-(S)-aspartic acid β-tert-butyl ester; F moc-Glu(OtBu)-OH, N- α-fluorenylmethoxy-carbonyl-(S)-glutamic acid β-tet-butyl ester; F moc-D-PheOH, N - α-fluorenylmethoxycarbonyl-(R)-phenylalanine; HOBt, N hydroxybenzotriazole; MsCl, methanesulfonyl chloride; NMM, N-methylmorpholine; PyBroP, bromotris(pyrrolidino)phosphonium hexafluorophosphate; TEA, triethylamine; TFA, trifluoroacetic acid; Troc-D-Cha-OH, N -(2,2,2-trichloroethoxy-carbonyl)-(R)-Cha; WSCDI, 1-(3-dimethylami nopropyl)-3-ethylcarbodiimide hydrochloride; $0.88 \mathrm{NH}_{3}$, ammonia solution specific gravity 0.88 .
Melting points were determined on a Buchi 510 apparatus and are uncorrected. ${ }^{1} \mathrm{H}$ nuclear magnetic resonance (NMR) spectroscopic data were recorded on a Varian Unity 300 or a Bruker AC-300 NMR instrument. The ${ }^{1}$ H NMR spectra of advanced intermediates were somewhat complex due to the occurrence of rotamers, and in some cases diastereoisomers, but were thoroughly consistent with the assigned structure. Mass spectra were obtained with a Fisons Trio-1000 spectrometer using thermospray ionization. Column chromatography was accomplished on Kieselgel 60 (230-400 mesh) obtained from E. Merck, Darmstadt. Kieselgel $60 \mathrm{~F}_{254}$ plates, also from E . Merck, were used for thin-layer chromatography (TLC), and compounds were visualized with UV light and sprayed sequentially with iodoplatinate reagent (chl oroplatinic acid, KI , and $\mathrm{H}_{2} \mathrm{O}$), Dragendorff's reagent (bismuth oxynitrate, $\mathrm{ACOH}-\mathrm{H}_{2} \mathrm{O} ; \mathrm{KI}, \mathrm{H}_{2} \mathrm{O}$), and aqueous NaNO_{2}. Analar or highperformance liquid chromatography (HPLC) grade solvents were used, and evaporation was conducted on a rotary evaporator at $25-50^{\circ} \mathrm{C}$ under vacuum.
N-t-Butyloxycarbonyl-2(RS)-(2-hydroxyethyl)piperidine (23). A solution of $\mathrm{Boc}_{2} \mathrm{O}(10.91 \mathrm{~g}, 50 \mathrm{mmol})$ in EtOAc

Scheme 6^{a}

${ }^{\text {a }}$ Reagents: (a) Fmoc-L-Glu(OtBu)-OH, PyBroP, DIPEA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (b) piperidine, THF; (c) cyclohexanone, $\mathrm{NaBH}(\mathrm{OAC})_{3}, \mathrm{AcOH}$, THF ; (d) $37 \% \mathrm{HCHO}(\mathrm{aq}), \mathrm{NaBH}(\mathrm{OAc})_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (e) $\mathrm{HCl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$.
$(15 \mathrm{~mL}$) was added to a stirred solution of 2(RS)-(2- hydroxyethyl) piperidine (34b) ($5.06 \mathrm{~g}, 50 \mathrm{mmol}$) in EtOAc (25 mL) at $0^{\circ} \mathrm{C}$, and the mixture was then warmed to $23^{\circ} \mathrm{C}$. After a further 1.5 h , the reaction mixture was evaporated under reduced pressure and the residue was purified by chromatography on silica gel using hexanes- $\mathrm{Et}_{2} \mathrm{O}$ (1:1) as eluant to provide BOC-amine 23 ($8.46 \mathrm{~g}, 74 \%$) as a clear oil. $\mathrm{R}_{\mathrm{f}} 0.25$ (hexane:Et ${ }_{2} \mathrm{O}, 1: 1$). ${ }^{1 \mathrm{H}}$ NMR (CDCl_{3}): $\delta 1.30-1.85$ (m, 8 H), 1.48 (s, 9 H), 1.92 (t, 1 H), 2.68 (t, 1 H), 3.16 (m, 1 H), 3.563.66 (m, 1 H), 3.94 (d, 1 H), 4.22 (s, 1 H).

N-t-Butoxycarbonyl-2(RS)-[2-(4-cyanophenoxy)ethyl]piperidine (24). DEAD ($1.73 \mathrm{~mL}, 11 \mathrm{mmol}$) was added to a stirred, ice-cooled solution of alcohol $23(2.29 \mathrm{~g}, 10 \mathrm{mmol})$, triphenylphosphine ($2.88 \mathrm{~g}, 11 \mathrm{mmol}$), and 4-cyanophenol (1.31 $\mathrm{g}, 11 \mathrm{mmol}$) in tetrahydrofuran ($\mathrm{THF} ; 75 \mathrm{~mL}$), and then, the cooling bath was removed. After an additional 18 h , the reaction mixture was evaporated under reduced pressure and the residue was dissolved in ether. The resulting solution was washed with aqueous NaOH solution ($1 \mathrm{M}, \times 2$) and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated under reduced pressure to give crude product, which was purified by chromatography on silica gel, using hexanes- $\mathrm{Et}_{2} \mathrm{O}$ (1:1) as eluant, to furnish the ether $24(2.86 \mathrm{~g}, 87 \%)$ as a clear oil, which solidified on standing. R_{f} 0.30 (hexane:Et $\mathrm{t}_{2} \mathrm{O}, 1: 1$). ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 1.20-1.80$ (m, 6 H), 1.35 (s, 9 H), 1.78-1.94 (m, 1 H), 2.20-2.34 (m, 1 H), 2.80 $(\mathrm{t}, 1 \mathrm{H}), 3.90-4.10(\mathrm{~m}, 3 \mathrm{H}), 4.44-4.56(\mathrm{~m}, 1 \mathrm{H}), 6.90(\mathrm{~d}, 2 \mathrm{H})$ 7.58 (d, 2 H). Anal. $\left(\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

2(RS)-[2-(4-Cyanophenoxy)ethyl]piperidine (25). TFA $(10 \mathrm{~mL})$ was added to a stirred, ice-cooled solution of BOC-
amine $\mathbf{2 4}(2.83 \mathrm{~g}, 8.56 \mathrm{mmol})$ and anisole ($1.88 \mathrm{~mL}, 17.3 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$. After a further 1 h , the reaction mixture was evaporated under reduced pressure, the residue was dissolved in water, and the solution was washed with $\mathrm{Et}_{2} \mathrm{O}$, basified with aqueous $\mathrm{NaOH}(2 \mathrm{M})$, and extracted with $\mathrm{Et}_{2} \mathrm{O}$ ($\times 3$). The combined extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated under reduced pressure to afford amine 25 ($1.43 \mathrm{~g}, 75 \%$) as an oil, which solidified on standing. $\mathrm{R}_{\mathrm{f}} 0.15\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: 0.88 \mathrm{NH}_{3}, 93: 7: 1\right)$. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta$ $1.06-1.28(\mathrm{~m}, 1 \mathrm{H}), 1.28-1.51(\mathrm{~m}, 3 \mathrm{H}), 1.51-1.76(\mathrm{~m}, 2 \mathrm{H})$, 1.76-1.94 (m, 3 H), 2.56-2.80 (m, 2 H), 3.07 (d, 1 H), 4.024.10 (m, 2 H), 6.94 (d, 2 H), 7.58 (d, 2 H). LRMS: m/z 231.3 $(\mathrm{M}+\mathrm{H})^{+}$.

N-(2,2,2-Trichloroethoxycarbonyl)-(R)-Cha. Aqueous $\mathrm{NaHCO}_{3}(82 \mathrm{~mL}, 1 \mathrm{M})$ was added to an ice cold stirred solution of H-D-Cha-OH ($11.91 \mathrm{~g}, 41 \mathrm{mmol}$) dissolved in aqueous NaOH ($41 \mathrm{~mL}, 1 \mathrm{M}$). The resulting thick suspension was stirred vigorously as a solution of N -(2,2,2-trichloroethoxycarbonyloxy)succinimide ($7.02 \mathrm{~g}, 41 \mathrm{mmol}$) in dioxan (82 mL) was added. After 1 h , most of the dioxan was evaporated and the residue was extracted with EtOAc. The aqueous phase was then acidified with concentrated HCl and extracted with EtOAc. The extract was washed with brine and dried $\left(\mathrm{MgSO}_{4}\right)$. Evaporation gave an oil (13.79 g), which was dissolved in ether, and the solution was filtered through a short column of silica to give Troc-D-Cha-OH ($12.3 \mathrm{~g}, 87 \%$) as a white foam, which solidified on standing. $\mathrm{R}_{\mathrm{f}} 0.20$ ($\mathrm{Et}_{2} \mathrm{O}$:hexane, 6:4). ${ }^{1 \mathrm{H}}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ (85:15 distribution of rotamers): $\delta 0.96(\mathrm{~m}, 2 \mathrm{H}), 1.22$
($\mathrm{m}, 3 \mathrm{H}$), 1.45 (m, 1 H), 1.55-1.90(m, 7 H), 4.48 ($\mathrm{m}, 1 \mathrm{H}$), 4.69 (d, 1 H), 4.82 (d, 1 H), 5.32 (d, 0.85 H), 5.58 (d, 0.15 H).

N-[N-(2,2,2-Trichloroethoxycarbonyl)-(R)-cyclohexyl-alanyl]-2(S)-[2-(4-cyanophenoxy)ethyl]piperidine (26) and N-[N-(2,2,2-Trichloroethoxycarbonyl)-(R)-cyclohexyl-alanyl]-2(R)-[2-(4-cyanophenoxy)ethyl]piperidine (27). Oxalyl chloride ($1.5 \mathrm{~mL}, 17.2 \mathrm{mmol}$) was added to a stirred solution of Troc-D-Cha-OH ($1.49 \mathrm{~g}, 4.3 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20$ mL) followed by one drop of DMF. After 1.5 h , the solution was evaporated, azeotroped with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\times 2)$, and dried under high vacuum. The residual oil was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and stirred with ice-cooling, and the amine $\mathbf{2 5}$ ($1.0 \mathrm{~g}, 4.3 \mathrm{mmol}$) was added dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, followed by DIPEA $(1.5 \mathrm{~mL}, 8.6 \mathrm{mmol})$. After 1 h , the solvent was evaporated and the residue was partitioned between EtOAc and $\mathrm{H}_{2} \mathrm{O}$. The organic phase was washed with $\mathrm{HCl}(2 \mathrm{M}), \mathrm{H}_{2} \mathrm{O}$, saturated aqueous NaHCO_{3}, and brine. Drying over MgSO_{4} and evaporation gave a foam (2.60 g). The above reaction was repeated on twice the scale, and the crude products were combined (7.55 g) and chromotographed on silica. Elution with increasing proportions of $\mathrm{Et}_{2} \mathrm{O}$-hexane ($1: 1$ to 6:4) gave initially the S, R diastereoisomer 26 ($3.04 \mathrm{~g}, 42 \%$) as a foam. $\mathrm{R}_{\mathrm{f}} 025$ ($\mathrm{Et}_{2} \mathrm{O}$: hexane, 6:4). ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) (90:10 distribution of rotamers): $\delta 0.60-1.85(\mathrm{~mm}, 18 \mathrm{H}), 1.92(\mathrm{~m}, 2 \mathrm{H}), 2.75(\mathrm{~m}, 1 \mathrm{H})$, $2.70(\mathrm{t}, 0.1 \mathrm{H}), 3.22(\mathrm{t}, 0.9 \mathrm{H}), 3.70(\mathrm{~d}, 0.9 \mathrm{H}), 3.98(\mathrm{~m}, 2.1 \mathrm{H})$, 4.44 (m, 0.1 H), 4.57 (d, 2 H), 4.68 (m, 1H), 4.79 (m, 1.1 H), 4.97 (m, 0.9 H$), 5.63(\mathrm{~d}, 0.1 \mathrm{H}), 5.71$ (d, 0.9 H$)$. LRMS: m/z $559(\mathrm{M}+\mathrm{H})^{+}$. Anal. $\left(\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$. Continued elution gave the R,R diastereoisomer 27 ($3.17 \mathrm{~g}, 44 \%$) as a foam. Rf 0.20 ($\mathrm{Et}_{2} \mathrm{O}$:hexane, $6: 4$). ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) ($1: 1$ distribution of rotamers): $\delta 0.72-1.85(\mathrm{~mm}, 8 \mathrm{H}), 2.00(\mathrm{~m}, 2$ H), $2.28(\mathrm{~m}, 1 \mathrm{H}), 2.70(\mathrm{t}, 0.5 \mathrm{H}), 3.17(\mathrm{t}, 0.5 \mathrm{H})$, $3.68(\mathrm{~d}, 0.5$ H), $3.88-4.23(\mathrm{~mm}, 2.5 \mathrm{H}), 4.47(\mathrm{~d}, 0.5 \mathrm{H}), 4.53(\mathrm{dd}, 0.5 \mathrm{H})$, $4.62(\mathrm{~d}, 0.5 \mathrm{H}), 4.79(\mathrm{~m}, 2 \mathrm{H}), 5.00(\mathrm{~m}, 0.5 \mathrm{H}), 5.77(\mathrm{t}, 1 \mathrm{H})$, $6.89(d, 1 H), 7.57(d, 2 H)$. LRMS: m/z $559(M+H)^{+}$. Anal. $\left(\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

N-[(R)-Cyclohexylalanyl]-2(S)-[2-(4-cyanophenoxy)ethyl]piperidine (28). This compound was prepared from 26 in a similar manner as 29. Amine $\mathbf{2 8}$ (71\%) was obtained as a gum. $\mathrm{R}_{\mathrm{f}} 0.50\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: 0.88 \mathrm{NH}_{3}, 93: 7: 1\right)$. $\left.{ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(} \mathrm{CDCl}_{3}\right)$ ($80: 20$ distribution of rotamers): $\delta 0.63-2.07$ (mm, 22 H), 2.23 ($\mathrm{m}, 1 \mathrm{H}$), $2.68(\mathrm{t}, 0.2 \mathrm{H}), 316(\mathrm{t}, 0.8 \mathrm{H}), 3.70(\mathrm{~m}, 1.8 \mathrm{H}), 4.03$ $(\mathrm{m}, 2 \mathrm{H}), 4.37(\mathrm{~m}, 0.2 \mathrm{H}), 4.58(\mathrm{~d}, 0.2 \mathrm{H}), 4.98(\mathrm{~m}, 0.8 \mathrm{H}), 6.91$ (d, 2 H), 7.56 (d, 2 H). LRMS: m/z $384(\mathrm{M}+\mathrm{H})^{+}, 767(2 \mathrm{M}+$ H)

N-[(R)-Cyclohexylalanyl]-2(R)-[2-(4-cyanophenoxy)ethyl]piperidine (29). Zn dust ($18 \mathrm{~g}, 0.28 \mathrm{~mol}$) was added to a stirred solution of Troc-amine 27 ($3.1 \mathrm{~g}, 55 \mathrm{mmol}$) in THF (56 mL) followed by $\mathrm{KH}_{2} \mathrm{PO}_{4}(18 \mathrm{~mL}, 1 \mathrm{M}$). After 1.5 h , the mixture was filtered and evaporated to a small volume. The pH was lowered to 2 with $\mathrm{HCl}(2 \mathrm{M}), \mathrm{H}_{2} \mathrm{O}$ was added, and the mixture was extracted with EtOAc (100 mL). The aqueous phase was separated, and the organic phase was extracted with $\mathrm{H}_{2} \mathrm{O}(\times 8)$. The combined aqueous extracts were basified to pH 11 with $\mathrm{NaOH}(2 \mathrm{M})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ to give amine 29 ($1.63 \mathrm{~g}, 77 \%$) as a gum. $\mathrm{R}_{\mathrm{f}} 0.43\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}\right.$: $0.88 \mathrm{NH}_{3}, 93: 7: 1$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ (1:1 distribution of rotamers): $\delta 0.7-2.08(\mathrm{~mm}, 22 \mathrm{H}), 2.29(\mathrm{~m}, 1 \mathrm{H}), 2.65(\mathrm{t}, 0.5 \mathrm{H})$, 3.13 (t, 0.5 H$), 3.65(\mathrm{~d}, 0.5 \mathrm{H}), 3.80(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{~m}, 2 \mathrm{H})$, $4.23(\mathrm{~m}, 0.5 \mathrm{H}), 4.60(\mathrm{~d}, 0.5 \mathrm{H}), 5.03(\mathrm{~m}, 0.5 \mathrm{H}), 6.89(\mathrm{~d}, 1 \mathrm{H})$, 6.95 (d, 1 H), 7.57 (t, 2 H). LRMS: m/z 384 (M + H) ${ }^{+}$.

N-[N-(Ethoxycarbonylmethyl)-(R)-cyclohexylalanyl]-2(S)-[2-(4-cyanophenoxy)ethyl]piperidine (30). $\mathrm{K}_{2} \mathrm{CO}_{3}$ (1.1 $\mathrm{g}, 8 \mathrm{mmol})$ was added to a solution of amine $\mathbf{2 8}(1.53 \mathrm{~g}, 4 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(20 \mathrm{~mL})$, followed by ethyl bromoacetate (0.49 mL , 4.4 mmol). The suspension was stirred at $23^{\circ} \mathrm{C}$ for 19 h , and most of the solvent was evaporated under vacuum. The residue was partitioned between EtOAc and $\mathrm{H}_{2} \mathrm{O}$, and the organic phase was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation gave a gum that was chromotographed on silica, with EtOAc-hexane as eluant (6:4), giving ester 30 ($1.79 \mathrm{~g}, 95 \%$) as a gum. $\mathrm{R}_{\mathrm{f}} 0.40$ (EtOAc:hexane, 6:4). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ (85: 15 distribution of rotamers): $\delta 0.62-1.05(\mathrm{~m}, 2 \mathrm{H}), 1.05-2.0$
(m, 21 H), $2.24(\mathrm{~m}, 2 \mathrm{H}), 2.68(\mathrm{t}, 0.15 \mathrm{H}), 3.12(\mathrm{~m}, 2.7 \mathrm{H}), 3.38$ (d, 0.15 H$), 3.59(\mathrm{dd}, 0.85 \mathrm{H}), 3.72(\mathrm{~m}, 1.14 \mathrm{H}), 4.05(\mathrm{~m}, 3.85$ H), $4.37(\mathrm{~m}, 0.15 \mathrm{H}), 4.60(\mathrm{~d}, 0.15 \mathrm{H}), 5.04(\mathrm{~m}, 0.85 \mathrm{H}), 6.92$ (d, 2 H), 7.55 (dd, 2 H). LRMS: m/z $470(\mathrm{M}+\mathrm{H})^{+}$.

N-[N-(Ethoxycarbonylmethyl)-(R)-cyclohexylalanyl]-2(R)-[2-(4-cyanophenoxy)ethyl]piperidine (31). This compound was prepared from 29 in a manner similar to 30 . Ester 31 (94\%) was obtained a a gum. $\mathrm{R}_{\mathrm{f}} 0.28$ (EtOAc:hexane, 6:4). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ (1:1 distribution of rotamers): $\delta 2.83$ (m, 2 $\mathrm{H}), 1.05-2.11(\mathrm{~mm}, 21 \mathrm{H}), 2.22(\mathrm{~m}, 2 \mathrm{H}), 2.63(\mathrm{t}, 0.5 \mathrm{H}), 2.74$ (d, 0.5 H), 3.05 (d, 0.5 H), $3.11(\mathrm{t}, 0.5 \mathrm{H}$), $3.20(\mathrm{~d}, 0.5 \mathrm{H}$), 3.36 (d, 0.5 H$), 3.62(\mathrm{~m}, 1.5 \mathrm{H}), 3.85-4.25(\mathrm{~mm}, 4.5 \mathrm{H}), 4.60(\mathrm{dd}$, 0.5 H), 5.04 ($\mathrm{q}, 0.5 \mathrm{H}$), 6.90 (d, 1 H), 6.94 (d, 1 H), 7.56 (d, 1 H), 7.60 (d, 1 H). LRMS: $m / z 470(M+H)^{+}$

N-[N-(Ethoxycarbonylmethyl)-(R)-cyclohexylalanyl]-2(S)-[2-(4-amidinophenoxy)ethyl]piperidine Dihydrochloride (32). An ice cold solution of nitrile $\mathbf{3 0} \mathbf{(7 8 0 ~ m g , ~} 1.66$ mmol) in absolute EtOH (10 mL , dried over $3 \AA$ molecular sieves) was saturated with HCl gas and left at $0{ }^{\circ} \mathrm{C}$ for 18 h . The solvent was evaporated under vacuum, and the residue was azeotroped with EtOH to give the intermediate ethyl imidate, $\mathrm{R}_{\mathrm{f}} 0.6\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: 0.88 \mathrm{NH}_{3}, 93: 7: 1\right)$. A solution of NH_{3} in EtOH ($3.4 \mathrm{~mL}, 1.96 \mathrm{M}, 6.6 \mathrm{mmol}$) was added to the foregoing imidate, and the resulting suspension was heated at $50{ }^{\circ} \mathrm{C}$ for 2 h . A second portion of ethanolic ammonia (2 $\mathrm{mL}, 3.9 \mathrm{mM}$) was added, and heating was continued for a further 1 h . The solvent was evaporated, and the residue was partitioned between ether and $\mathrm{H}_{2} \mathrm{O}$. The aqueous phase was then basified with $\mathrm{NaOH}(1 \mathrm{M})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. The filtrate was acidified with etherial HCl and evaporated to dryness to give amidine 32 ($804 \mathrm{mg}, 79 \%$) as a white powder. $\mathrm{R}_{\mathrm{f}} 0.33\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: 0.88 \mathrm{NH}_{3}, 80: 20: 5\right)$. ${ }^{1 \mathrm{H}}$ NMR (DMSO-d ${ }_{6}$) (90:10 distribution of rotamers): $\delta 0.84$ (m, $2 \mathrm{H}), 1.00(\mathrm{~mm}, 20 \mathrm{H}), 1.93(\mathrm{~m}, 1 \mathrm{H}), 2.22(\mathrm{~m}, 1 \mathrm{H}), 2.79(\mathrm{t}, 0.1$ H), $3.20(\mathrm{~m}, 0.9 \mathrm{H}), 3.29-3.91(\mathrm{~mm}, 5 \mathrm{H}), 4.11(\mathrm{~m}, 4 \mathrm{H}), 4.30$ (d, 0.1 H), $4.48(\mathrm{~m}, 0.9 \mathrm{H}), 4.60(\mathrm{~m}, 0.1 \mathrm{H}), 4.79(\mathrm{~m}, 0.9 \mathrm{H})$, 7.08 (d, 2 H), 7.88 (d, 2 H), 9.15 (s, 2 H), $9.30(\mathrm{~s}, 2 \mathrm{H})$. LRMS: $\mathrm{m} / \mathrm{z} 487(\mathrm{M}+\mathrm{H})^{+}, 470\left(\mathrm{M}+\mathrm{H}-\mathrm{NH}_{3}\right)^{+}$. Anal. $\left(\mathrm{C}_{27} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{O}_{4}\right.$. $\left.2 \mathrm{HCl} \cdot 3.2 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{N}$; H : calcd, 8.23 ; found, 7.78 .
N-[N-(Ethoxycarbonylmethyl)-(R)-cyclohexylalanyl]-2(R)-[2-(4-amidinophenoxy)ethyl]piperidine Dihydrochloride (33). This compound was prepared from 31 in a manner similar to 32. Amidine 33 (83%) was obtained as a white powder. $\mathrm{R}_{\mathrm{f}} 0.35\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: 0.88 \mathrm{NH}_{3}, 80: 20: 5\right) .{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) ($6: 4$ distribution of rotamers): $\delta 0.83$ ($\mathrm{m}, 2$ H), 1.00-2.29 (mm, 22 H), 2.76 (t, 0.4 H), 3.22 (t, 0.6 H), 2.28$4.25(\mathrm{~mm}, 9 \mathrm{H}), 4.30(\mathrm{br} \mathrm{s}, 0.4 \mathrm{H}), 4.34(\mathrm{br} \mathrm{s}, 0.4 \mathrm{H}), 4.55$ (br s, 0.6 H$), 4.90(\mathrm{br} \mathrm{s}, 0.6 \mathrm{H}), 7.05(\mathrm{~d}, 1.2 \mathrm{H}), 7.17(\mathrm{~d}, 0.8 \mathrm{H})$, 7.87 (t, 2 H), 9.05 (s, 2 H), 9.27 (d, 2 H). LRMS: m/z 487 (M + $\mathrm{H})^{+}, 470\left(\mathrm{M}+\mathrm{H}-\mathrm{NH}_{3}\right)^{+}$. Anal. $\left(\mathrm{C}_{27} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{O}_{4} \cdot 2 \mathrm{HCl} \cdot 1.0 \mathrm{H}_{2} \mathrm{O} \cdot 0.1-\right.$ $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

2(S)-(2-Hydroxyethyl)piperidine (34a). 2(RS)-(2-Hydroxyethyl) piperidine (34b) (110 g) was resolved using (1S)-(+)-10camphorsulfonic acid as described ${ }^{31}$ via the intermediate (S, S)-10-camphor-sulfonate salt, $\mathrm{mp} 167{ }^{\circ} \mathrm{C}$ (Literature ${ }^{31}$ 166-167 $\left.{ }^{\circ} \mathrm{C}\right) ;[\alpha]_{D} 25+32.5^{\circ}\left(\mathrm{c}=2.2, \mathrm{CHCl}_{3}\right)\left(\right.$ Literature $^{32}[\alpha]_{\mathrm{D}}+32.4^{\circ}$ ($\mathrm{c}=2, \mathrm{CHCl}_{3}$)). The absolute configuration of the salt was confirmed by single-crystal X-ray crystallographic analysis. The amine $\mathbf{3 4 a}$ (13.56 g) was obtained as fine needles, mp 69 $70^{\circ} \mathrm{C}$ (Literature ${ }^{31} 68-69^{\circ} \mathrm{C}$), $\mathrm{R}_{\mathrm{f}} 0.25$ (isobutyl methyl ketone: AcOH: $\mathrm{H}_{2} \mathrm{O}, 2: 1: 1$, upper phase). GC analysis of the bis-TFA derivative, employing a Chiraldex B-TA No C70 column, showed an enantiomeric excess (ee) of $>98 \%$.

N-Benzyloxycarbonyl-2(S)-(2-hydroxyethyl)piperidine (35a). To a stirred, ice-cooled solution of amine 34a ($13.4 \mathrm{~g}, 0.104 \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(250 \mathrm{~mL}$) were added, sequentially, $\mathrm{Et}_{3} \mathrm{~N}$ ($15.9 \mathrm{~mL}, 0.114 \mathrm{~mol}$) and CbzOSuc ($27.21 \mathrm{~g}, 0.109$ mol). The cooling bath was removed, and the reaction mixture was stirred at $23^{\circ} \mathrm{C}$ for 18 h , washed with brine, dried ($\mathrm{Na}_{2}-$ SO_{4}), and evaporated under reduced pressure to give an oil (30.6 g), which was purified by chromatography on silica gel, using hexanes-EtOAc (1:1) as eluant, to provide carbamate 35a ($27.5 \mathrm{~g}, 100 \%$) as an oil. R f 0.48 (hexane:EtOAc, 1:1);
$[\alpha]_{\mathrm{D}} 25-24.5^{\circ}(\mathrm{c}=1.06, \mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.50-$ 1.86 (m, 8 H), 1.86-2.05 (m, 1 H), 2.70-2.85 (m, 1 H), 3.14$3.50(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.50-3.68(\mathrm{~m}, 1 \mathrm{H}), 4.06(\mathrm{~d}, 1 \mathrm{H}), 4.40-4.58$ (m, 1 H), 5.16 (s, 2 H), $7.20-7.43$ (m, 5 H).

N-Benzyloxycarbonyl-2(RS)-(2-hydroxyethyl)piperidine (35b). Protection of 2(RS)-(2-hydroxyethyl)pi peridine (34b) $(25.0 \mathrm{~g}, 193 \mathrm{mmol})$ with CbzOSuc ($48.1 \mathrm{~g}, 193 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(29.6 \mathrm{~mL}, 212 \mathrm{mmol})$ by the procedure described for 35a gave Cbz-amine 35b ($22.0 \mathrm{~g}, 43 \%$) as a colorless oil. R_{f} 0.48 (hexane:EtOAc, 1:1). ${ }^{12} \mathrm{H}$ NMR (CDCl_{3}): consistent with that of 35a. LRMS: m/z $264.4(\mathrm{M}+\mathrm{H})^{+}$. Anal. $\left(\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{3}\right)$ $\mathrm{C}, \mathrm{H}, \mathrm{N}$.

N-Benzyloxycarbonyl-2(S)-(2-methanesulfonyloxyethyl)piperidine (36a). $\mathrm{MsCl}(16.1 \mathrm{~mL}, 0.208 \mathrm{~mol})$ was added dropwise over 15 min to a stirred, ice-cooled solution of al cohol 35a ($27.43 \mathrm{~g}, 0.104 \mathrm{~mol}$) and Et $\mathrm{N}_{3} \mathrm{~N}(29 \mathrm{~mL}, 0.208 \mathrm{~mol})$ in CH_{2-} $\mathrm{Cl}_{2}(350 \mathrm{~mL})$; the temperature of the reaction mixture was allowed to rise to $17{ }^{\circ} \mathrm{C}$ during the addition. After an additional 25 min , the reaction mixture was washed with aqueous citric acid solution (1 M), water, and saturated aqueous NaHCO_{3} solution, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated under reduced pressure to give a light yellow oil (40 g), which was purified by chromatography on silica gel, using hexanes-EtOAc (1:1) as eluant, to furnish mesylate 36 a ($33.5 \mathrm{~g}, 93 \%$) as a clear oil, which solidified on standing. $\mathrm{R}_{\mathrm{f}} 0.59$ (hexane:EtOAc, 1:1). ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 1.34-1.86(\mathrm{~m}, 6 \mathrm{H}), 1.86-1.95(\mathrm{~m}, 1 \mathrm{H}), 2.16-$ $2.32(\mathrm{~m}, 1 \mathrm{H}), 2.74-2.95(\mathrm{~m}, 4 \mathrm{H}), 4.01-4.18(\mathrm{~m}, 1 \mathrm{H}), 4.06(\mathrm{t}$, 2 H), 4.41-4.56 (m, 1 H), 5.10 (s, 2 H), 7.22-7.42 (m, 5 H). A trace of EtOAc was removed from the product azeotropically, using hexane $(\times 2)$, before the next step of the reaction sequence.

N-Benzyloxycarbonyl-2(RS)-(2-methanesulfonyloxyethyl)piperidine (36b). Mesylation of alcohol 35b (21.3 g, $80.9 \mathrm{mmol})$ with $\mathrm{MsCl}(12.5 \mathrm{~mL}, 0.162 \mathrm{~mol})$ and $\mathrm{Et}_{3} \mathrm{~N}$ (22.6 $\mathrm{mL}, 0.162 \mathrm{~mol}$) by the procedure described for 36a gave 36b $(23.24 \mathrm{~g}, 84 \%)$ as a colorless oil. $\mathrm{R}_{\mathrm{f}} 0.5$ (hexane:EtOAc, 1:1). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: consistent with that of $\mathbf{3 6 a}$. Anal. $\left(\mathrm{C}_{16} \mathrm{H}_{23^{-}}\right.$ $\left.\mathrm{NO}_{5} \mathrm{~S} \cdot 0.15 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

N-t-Butoxycarbonyl-4-hydroxypiperidine. $\mathrm{Boc}_{2} \mathrm{O}$ (35.58 $\mathrm{g}, 0.163 \mathrm{~mol}$) was added to a stirred, ice-cooled solution of 4-hydroxypiperidine ($15.0 \mathrm{~g}, 0.148 \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(250 \mathrm{~mL})$. The cooling bath was removed, and then, the reaction mixture was stirred at $23^{\circ} \mathrm{C}$ for 56 h , washed with aqueous citric acid solution (1 M), dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated under reduced pressure to give a yellowish oil; treatment of which with hexane (20 mL), followed by chilling, promoted crystallization. Filtration and washing of the product with cold hexane afforded N -t-butoxycarbonyl-4-hydroxypi peridine ($25.72 \mathrm{~g}, 86 \%$). $\mathrm{R}_{\mathrm{f}} 0.37$ (hexane:EtOAc, 1:1). ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 1.28-1.56$ (m, 2 H), $1.42(\mathrm{~s}, 9 \mathrm{H}), 1.72-1.83(\mathrm{~m}, 2 \mathrm{H}), 2.25(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 2.92-3.08 (m, 2 H), 3.74-3.88 (m, 3H). Anal. ($\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{NO}_{3}$) H, N; C: calcd, 59.68; found, 59.27.

N-Benzyloxycarbonyl-2(S)-[2-(N-t-butoxycarbonyl-4piperidyloxy)ethyl]piperidine (37a). N-t-Butoxycarbonyl-4-hydroxypiperidine ($19.67 \mathrm{~g}, 97.5 \mathrm{mmol}$) was added to a stirred suspension of $\mathrm{NaH}(3.9 \mathrm{~g}, 60 \%$ dispersion in oil, 97.5 mmol) in dry DMF (150 mL) under N_{2}. After 2 h , a solution of mesylate 36a ($32.9 \mathrm{~g}, 96.4 \mathrm{mmol}$) in dry DMF (100 mL) was added and the resulting reaction mixture was stirred for 18 h. The bulk of the solvent was removed under reduced pressure, the residue was diluted with water, and the resulting oily suspension was extracted with EtOAc ($\times 3$). The combined extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated under reduced pressureto give an oil, which was purified by chromatography on silica gel, using hexanes-EtOAc (7:3) as eluant, to afford ether $\mathbf{3 7 a}(26.26 \mathrm{~g}, 61 \%)$ as an oil. $\mathrm{R}_{\mathrm{f}} 0.35$ (hexane:EtOAc, 7:3); [$\alpha]_{D} 25-12.3^{\circ}\left(c=1.01, \mathrm{MeOH}\right.$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.30-1.80(\mathrm{~m}, 11 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H}), 1.94-2.12(\mathrm{~m}$, $1 \mathrm{H}), 2.86(\mathrm{t}, 1 \mathrm{H}), 2.94-3.10(\mathrm{~m}, 2 \mathrm{H}), 3.20-3.45(\mathrm{~m}, 3 \mathrm{H})$, 3.60-3.77 (m, 2 H), 4.07 (d, 1 H), 4.43 (br s, 1 H), 5.10 (s, 2 H), 7.23-7.40 (m, 5 H). Anal. ($\mathrm{C}_{25} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{5}$) C, H, N.

N-Benzyloxycarbonyl-2(RS)-[2-(N-t-butoxycarbonyl-4piperidyloxy)ethyl]piperidine (37b). Reaction of the mesylate $\mathbf{3 6 b}(3.41 \mathrm{~g}, 10.0 \mathrm{mmol})$ with the sodium alkoxide (12.0
mmol) derived from N -t-butoxycarbonyl-4-hydroxypiperidine $(2.42 \mathrm{~g}, 12.0 \mathrm{mmol})$ and $\mathrm{NaH}(0.48 \mathrm{~g}, 60 \%$ dispersion in oil, 12.0 mmol) by the procedure described for 37a gave 37b (2.62 g, 59\%) as a colorless oil. Rf 0.30 (hexane:EtOAc, 7:3). ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): consistent with that of 37a.

N-Benzyloxycarbonyl-2(S)-[2-(4-piperidyloxy)ethyl]piperidine hydrochloride (38a). A stirred, ice-cool ed solution of BOC-amine $37 \mathrm{a}(26.16 \mathrm{~g}, 58.6 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300$ mL) was saturated with hydrogen chloride gas. After a further 1.25 h , the sol vent was removed by evaporation under reduced pressure and residual HCl was removed azeotropically using $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\times 3)$ to give amine hydrochloride 38a ($22.59 \mathrm{~g}, 100 \%$) as a white foam. $\mathrm{R}_{\mathrm{f}} 0.60\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: 0.88 \mathrm{NH}_{3}, 85: 15: 2\right) .{ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 1.28-2.15(\mathrm{~m}, 12 \mathrm{H}), 2.85(\mathrm{t}, 1 \mathrm{H}), 2.95-$ 3.54 (m, 7 H), 4.06 (d, 1 H), 4.43 (br s, 1 H), 5.10 (dd, 2 H), 7.20-7.40 (m, 5 H), 9.41 (br s, 2 H). LRMS: m/z 347.3 ($\mathrm{M}+$ H) ${ }^{+}$.

N-Benzyloxycarbonyl-2(RS)-[2-(4-piperidyloxy)ethyl]piperidine Hydrochloride (38b). HCl gas deprotection of BOC-amine 37b ($15.27 \mathrm{~g}, 34.2 \mathrm{mmol}$) by the procedure described for 38 gave $\mathbf{3 8 b}$ ($13.4 \mathrm{~g}, 100 \%$) as a white foam. R_{f} $0.50\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: 0.88 \mathrm{NH}_{3}, 84: 14: 2\right)$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: consistent with that of 38a. LRMS: m/z $347.0(\mathrm{M}+\mathrm{H})^{+}$. Anal. $\left(\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

N-Benzyloxycarbonyl-2(S)-\{ $\mathbf{2 - [N}$-(N,N'-di-t-butoxycar-bonylamidino)-4-piperidyloxy]ethyl\}piperidine (39a). $\mathrm{Et}_{3} \mathrm{~N}(24.5 \mathrm{~mL}, 0.176 \mathrm{~mol})$ was added to a stirred, ice-cooled solution of amine hydrochloride 38a ($22.59 \mathrm{~g}, 58.6 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(280 \mathrm{~mL})$, the mixture was allowed to warm to $23^{\circ} \mathrm{C}$, and then, $\mathrm{N}, \mathrm{N}^{\prime}$-di-t-butoxycarbonyl-S-methylisothiourea ${ }^{29}$ (18.7 $\mathrm{g}, 64.4 \mathrm{mmol})$ and $\mathrm{HgCl}_{2}(15.91 \mathrm{~g}, 58.6 \mathrm{mmol})$ were added sequentially. The reaction mixture was stirred for 18 h , for an additional 2 h under reflux, and then filtered through Celite. The filtrate was washed with water, (further filtration of this two phase mixture was necessary to remove precipitated material), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated under reduced pressure to give crude product, which was purified by chromatography on silica gel, using an elution gradient of hex-anes-EtOAc (7:3 to 1:1), to provide guanidine 39a (30.37 g , 88%) as a sticky foam. R 0.20 (hexane:EtOAc, 1:1); [$\alpha]_{\mathrm{D}} 25$ $5.7^{\circ}(\mathrm{c}=1.1, \mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.30-1.87(\mathrm{~m}, 11$ H), $1.45(\mathrm{~s}, 18 \mathrm{H}), 1.92-2.09(\mathrm{~m}, 1 \mathrm{H}), 2.85(\mathrm{t}, 1 \mathrm{H}), 3.23-3.45$ ($\mathrm{m}, 5 \mathrm{H}$), 3.68 (br s, 2 H), 4.06 (d, 1 H), 4.42 (br s, 1 H$), 5.11$ (dd, 2 H), 7.25-7.38 (m, 5 H), 10.09 (s, 1 H). LRMS: m/z 589.4 $(\mathrm{M}+\mathrm{H})^{+}$. Anal. $\left(\mathrm{C}_{31} \mathrm{H}_{48} \mathrm{~N}_{4} \mathrm{O}_{7} \cdot 0.15 \mathrm{EtOAc}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

N-Benzyloxycarbonyl-2(RS)-\{2-[N-(N,N'-di-t-butoxy-carbonylamidino)-4-piperidyloxy]ethyl\}piperidine (39b). Guanidinylation of 38b ($13.09 \mathrm{~g}, 34.2 \mathrm{mmol}$) with $\mathrm{N}, \mathrm{N}^{\prime}$-di-t-butoxycarbonyl-S-methylisothiourea (10.86 g, 37.4 $\mathrm{mmol}), \mathrm{HgCl}_{2}(9.29 \mathrm{~g}, 34.2 \mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{~N}(14.3 \mathrm{~mL}, 0.103$ mol) by the procedure described for 39a gave $\mathbf{3 9 b}$ ($15.7 \mathrm{~g}, 78 \%$) as a sticky foam. R $\quad 0.35$ (hexane:EtOAc, 6:4). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: consistent with that of 39a. LRMS: m/z 589.4 (M + H) ${ }^{+}$.

2(S)-\{ 2-[N-(N,N'-Di-t-butoxycarbonylamidino)-4piperidyloxy]ethyl\}piperidine (40a). A solution of Cbzamine 39a ($26.82 \mathrm{~g}, 45.55 \mathrm{mmol}$) in absolute EtOH (400 mL) was hydrogenated (60 psi) over 10\% palladium on charcoal (5.0 g) at $23{ }^{\circ} \mathrm{C}$ for 2.5 h . The resulting mixture was filtered through a pad of Arbocel, and the filtrate was evaporated under reduced pressure, azeotroping with EtOAc ($\times 2$), to furnish amine 40a (20.36 g , 94\%) as a gum. $\mathrm{R}_{\mathrm{f}} 0.13\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$: $\mathrm{MeOH}: 0.88 \mathrm{NH}_{3}, 93: 7: 1$); $[\alpha]_{\mathrm{D}} 25-1.69^{\circ}(\mathrm{c}=1.3, \mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 1.00-1.81(\mathrm{~m}, 11 \mathrm{H}), 1.44(\mathrm{~s}, 18 \mathrm{H}), 1.81-$ 1.94 (m, 2 H), 2.52-2.66 (m, 2 H), 3.05 (d, 1 H), 3.39 (br s, 1 H), 3.44-3.57 (m, 3 H), 3.72 (br s, 1 H), 9.8 (vbr s, 1 H). LRMS: m/z $455(\mathrm{M}+\mathrm{H})^{+}$. Anal. $\left(\mathrm{C}_{23} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{O}_{5} \cdot 0.15 \mathrm{EtOAc}\right) \mathrm{C}$, H, N.

2(RS)-\{2-[N-(N,N'-Di-t-butoxycarbonylamidino)-4piperidyloxylethyl\}piperidine (40b). Hydrogenation of amine 39b ($15.68 \mathrm{~g}, 26.6 \mathrm{mmol}$) by the procedure described for 40a gave 40b ($12.0 \mathrm{~g}, 99 \%$) as a gum. $\mathrm{R}_{\mathrm{f}} 0.22\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$: $\left.\mathrm{MeOH}: 0.88 \mathrm{NH}_{3}, 93: 7: 1\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: consistent with that of 40a.

2(RS)-[2-(N-t-Butoxycarbonyl-4-piperidyloxy)ethyl]piperidine (41). To a stirred solution of Cbz-amine 37b (5.39 $\mathrm{g}, 12.1 \mathrm{mmol}$) in absolute EtOH (300 mL) was added 10% palladium on charcoal (5.4 g), foll owed by 1,4-cyclohexadiene ($11.4 \mathrm{~mL}, 121.1 \mathrm{mmol}$). The reaction mixture was stirred for 1 h under an atmosphere of N_{2} and then filtered through a pad of Arbocel. The filtrate was evaporated under reduced pressure to give crude product, which was purified by chromatography on silica gel, using $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}-0.88 \mathrm{NH}_{3}$ (90:10:1) as eluent, to give piperidine $41(2.75 \mathrm{~g}, 73 \%)$ as a brown oil. $\mathrm{R}_{\mathrm{f}} \mathrm{O} .63$ ($\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: 0.88 \mathrm{NH}_{3}, 90: 10: 1\right)$. ${ }^{1 \mathrm{H}}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.00-1.86(\mathrm{~m}, 20 \mathrm{H}), 2.05(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.58-2.65$ $(\mathrm{m}, 2 \mathrm{H}), 3.00-3.13(\mathrm{~m}, 3 \mathrm{H}), 3.38-3.45(\mathrm{~m}, 1 \mathrm{H}), 3.45-3.58$ $(\mathrm{t}, 2 \mathrm{H}), 3.62-3.80(\mathrm{~m}, 2 \mathrm{H})$. LRMS: m/z $313.3(\mathrm{M}+\mathrm{H})^{+}$. Anal. $\left(\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{3} \cdot 0.1 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \mathrm{C}, \mathrm{N} ; \mathrm{H}$: calcd, 10.11; found, 10.76.
N-[N-(2,2,2-Trichloroethoxycarbonyl)-(R)-cyclohexyl-alanyl]-2(RS)-[2-(N-t-butoxy-carbonyl-4-piperidinyloxy)ethyl]piperidine (42). Reaction of amine $41(1.85 \mathrm{~g}, 5.91$ mmol) with the acid chloride prepared from Troc-D-Cha-OH ($2.05 \mathrm{~g}, 5.91 \mathrm{mmol}$) and DIPEA ($2.06 \mathrm{~mL}, 11.82 \mathrm{mmol}$) by the procedure described for $\mathbf{2 6}$ furnished amide $\mathbf{4 2}(3.29 \mathrm{~g}, 87 \%)$ as a yellow gum. $\mathrm{R}_{\mathrm{f}} 0.73\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{M} \mathrm{MOH}: 0.88 \mathrm{NH}_{3}, 90: 10: 1\right.$). ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 0.80-2.18(\mathrm{~m}, 34 \mathrm{H}), 2.62-3.25(\mathrm{~m}, 3 \mathrm{H})$, $3.30-3.57(\mathrm{~m}, 3 \mathrm{H}), 3.60-3.83(\mathrm{~m}, 2 \mathrm{H}), 4.45-4.88(\mathrm{~m}, 5 \mathrm{H})$, 5.68-5.92 ($\mathrm{m}, 1 \mathrm{H}$). LRMS: $\mathrm{m} / \mathrm{z} 644.1(\mathrm{M}+\mathrm{H})^{+}$. Anal. $\left(\mathrm{C}_{29} \mathrm{H}_{48} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Cl}_{3} \cdot \mathrm{O}_{4} 4 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
N-[N-(2,2,2-Trichloroethoxycarbonyl)-(R)-cyclohexyl-alanyl]-2(RS)-[2-(4-piperidinyl-oxy)ethyl]piperidine Hy drochloride (43). HCl gas deprotection of BOC-amine 42 ($3.23 \mathrm{~g}, 5.04 \mathrm{mmol}$) by the procedure described for 38a gave $43(3.00 \mathrm{~g}, 100 \%)$ as a yellow foam. $\mathrm{R}_{\mathrm{f}} 0.83\left(\mathrm{CH}_{2} \mathrm{Cl} 2: \mathrm{MeOH}\right.$: $\left.0.88 \mathrm{NH}_{3}, 80: 20: 5\right)$. ${ }^{1 \mathrm{H}}$ NMR (CDCl_{3}): $\delta 0.80-2.19(\mathrm{~m}, 25 \mathrm{H})$, $2.58-3.68(\mathrm{~m}, 8 \mathrm{H}), 4.42-4.90(\mathrm{~m}, 5 \mathrm{H}), 5.81-5.88(\mathrm{~m}, 1 \mathrm{H})$, 9.20-9.68 (br s, 2 H). LRMS: m/z $540.1(\mathrm{M}+\mathrm{H})^{+}$. Anal. $\left(\mathrm{C}_{24} \mathrm{H}_{40} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Cl} 3_{3} \cdot \mathrm{HCl} \cdot 0.4 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
N-[N-(2,2,2-Trichloroethoxycarbonyl)-(R)-cyclohexyl-alanyl]-2(RS)-\{2-[N-(N,N'di-t-butoxycarbonylamidino)4 -piperidyloxy]ethyl\} piperidine (44). Guanidinylation of 43 ($2.97 \mathrm{~g}, 5.15 \mathrm{mmol}$) with $\mathrm{N}, \mathrm{N}^{\prime}$-di-t-butoxycarbonyl-S-methyli isothiourea ($1.49 \mathrm{~g}, 5.15 \mathrm{mmol}), \mathrm{HgCl}_{2}(3.53 \mathrm{~g}, 10.29 \mathrm{mmol})$, and $E t_{3} \mathrm{~N}(2.15 \mathrm{~mL}, 15.44 \mathrm{mmol})$ by the procedure described for 39a gave $44(3.76 \mathrm{~g}, 83 \%)$ as a beige foam. $\mathrm{R}_{\mathrm{f}} 0.63\left(\mathrm{CH}_{2-}\right.$ $\left.\mathrm{Cl}_{2}: \mathrm{MeOH}, 95: 5\right)$. ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 0.79-2.18(\mathrm{~m}, 43 \mathrm{H})$, $2.60-3.85(\mathrm{~m}, 8 \mathrm{H}), 4.42-4.90(\mathrm{~m}, 5 \mathrm{H}), 5.82-5.92(\mathrm{~m}, 1 \mathrm{H})$, 10.02-10.19 (br s, 1 H). Anal. ($\left(\mathrm{C}_{35} \mathrm{H}_{58} \mathrm{~N}_{5} \mathrm{O}_{8} \mathrm{Cl}_{3} \cdot 1 \cdot 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \mathrm{C}$, H, N.

N-[(R)-Cyclohexylalanyl]-2(RS)-\{2-[N-(N,N'-di-t-bu-toxycarbonylamidino)-4-pi peridyloxy]ethyl\} pi peridine (45). Zn dust ($1.25 \mathrm{~g}, 19.02 \mathrm{mmol}$) was added to a stirred solution of Troc-amine $\mathbf{4 4}$ ($745 \mathrm{mg}, 0,95 \mathrm{mmol}$) in AcOH (35 mL), and the resulting heterogeneous sol ution was stirred at room temperature for 4 h . The reaction mixture was then neutralized by the cautious addition of saturated aqueous NaHCO_{3} solution. The resulting aqueous solution was extracted with ethyl acetate $(\times 1)$, the organic extract was washed with brine and dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvent was evaporated under reduced pressure to give the crude product. Purification by chromatography on silica gel, using an elution gradient of $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}$ ($100: 0$ to $95: 5$), gave amine 45 ($367 \mathrm{mg}, 63 \%$). $\mathrm{R}_{\mathrm{f}} 0.52\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: 0.88 \mathrm{NH}_{3}, 90: 10: 1\right)$. ${ }^{1 \mathrm{H}}$ NMR (CDCl_{3}): $\delta 0.75-2.13(\mathrm{~m}, 43 \mathrm{H}), 3.05-3.65(\mathrm{~m}, 5 \mathrm{H}), 3.66-3.88(\mathrm{~m}, 2$ H), 3.90-4.33 (m, 2H), 4.46-4.90 (m, 2H). LRMS: m/z 608.7 $(M+H)^{+}$.
N -[N-(t-Butoxycarbonylmethyl)-(R)-cyclohexylalanyl]-2(RS)-\{2-[N-(N,N'-di-t-butoxycarbonylamidino)-4piperidyloxylethyl) piperidine (46). tert-Butyl bromoacetate ($94 \mu \mathrm{~L}, 0.64 \mathrm{mmol}$) was added to a stirred suspension of $\mathrm{K}_{2} \mathrm{CO}_{3}(0.16 \mathrm{~g}, 1.16 \mathrm{mmol})$ in a sol ution of amine 45 (352 mg , 0.58 mmol) in $\mathrm{MeCN}(5.0 \mathrm{~mL})$. The reaction mixture was stirred at room temperature under N_{2} for 30 h . The solvent was then evaporated under reduced pressure, and the resultant semisol id was partitioned between water and EtOAc. The organic layer was separated, washed with brine, and dried (MSO_{4}), and the solvent was evaporated under reduced
pressure to give the crude product. Purification by chromatography on silica gel, using an elution gradient of $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ MeOH (100:0 to 95:5), gave tert-butyl ester 46 ($299 \mathrm{mg}, 72 \%$) as a white foam. $\mathrm{R}_{\mathrm{f}} 0.55\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: 0.88 \mathrm{NH}_{3}, 90: 10: 1\right.$). ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 0.73-1.02(\mathrm{~m}, 2 \mathrm{H}), 1.05-2.12(\mathrm{~m}, 50 \mathrm{H})$, $3.00-3.86(\mathrm{~m}, 12 \mathrm{H}), 4.08-4.23(\mathrm{~m}, 1 \mathrm{H}), 4.51-4.62(\mathrm{~m}, 1 \mathrm{H})$, $4.85-4.96(\mathrm{~m}, 1 \mathrm{H}), 10.10-10.20(\mathrm{~m}, 1 \mathrm{H})$. Anal. ($\mathrm{C}_{38} \mathrm{H}_{6} \mathrm{~N}_{5} \mathrm{O}_{8}$) C, H, N.
$\mathrm{N}-[\mathrm{N}-(\alpha-$ Fluorenylmethoxycarbonyl)-(R)-phenylalanyl]-2(RS)-\{2-[N-(N,N'-di-t-butoxy-carbonylamidino)-4piperidyloxy]ethyl\} piperidine (47). DIPEA ($0.53 \mathrm{~mL}, 3$ mmol) was added to an ice cold stirred sol ution of amine 40b ($681 \mathrm{mg}, 1.5 \mathrm{mmol}$), F moc-D-Phe-OH ($620 \mathrm{mg}, 1.6 \mathrm{mmol}$), and PyBroP ($769 \mathrm{mg}, 1.65 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. After 2 h , a second portion of PyBroP ($100 \mathrm{mg}, 0.21 \mathrm{mmol}$) was added and the reaction was stirred for a further 2 h . The solvent was evaporated, and the residue was partitioned between EtOAc and $\mathrm{H}_{2} \mathrm{O}$. The organic phase was washed with citric acid (1 M), $\mathrm{H}_{2} \mathrm{O}$, saturated aqueous NaHCO_{3}, and brine and then dried over MgSO_{4}. Evaporation gave a foam, which was purified by chromotography on silica, using EtOAc-hexane ($1: 1$) as eluant, to give amide 47 ($790 \mathrm{mg}, 64 \%$) as a white foam. $R_{f} 0.3$ (EtOAc:hexane, 1:1). ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 1.30-1.96$ $(\mathrm{mm}, \sim 30 \mathrm{H}), 2,62(\mathrm{~m}, 0.75 \mathrm{H}), 3.00(\mathrm{~m}, 2 \mathrm{H}), 3.36(\mathrm{~m}, 5 \mathrm{H})$, $3.71(\mathrm{~m}, 2.25 \mathrm{H}), 3.95(\mathrm{~m}, 0.25 \mathrm{H}), 4.11-4.57(\mathrm{~mm}, 3.75 \mathrm{H})$, $4.88(\mathrm{~m}, 1.25 \mathrm{H}), 5.71(\mathrm{~m}, 0.75 \mathrm{H}), 7.14-7.44(\mathrm{~mm}, \sim 10 \mathrm{H})$, 7.57 (d, 2 H), 7.77 (d, 2 H$), 10.11$ (d, 1 H). LRMS: $\mathrm{m} / \mathrm{z} 602$ (M $+\mathrm{H}-\mathrm{Fmoc})^{+}$. Anal. $\left(\mathrm{C}_{47} \mathrm{H}_{61} \mathrm{~N}_{5} \mathrm{O}_{8}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
$\mathbf{N}-[(\mathrm{R})-$ Phenylalanyl]-2(RS)-\{2-[N-(N,N-di-t-butoxycar-bonylamidino)-4-piperidyloxy]ethyl\} piperidine (48). Piperidine ($0.85 \mathrm{~mL}, 9 \mathrm{mmol}$) was added to a solution of $\mathrm{Fmoc}-$ amine 47 ($750 \mathrm{mg}, 0.91 \mathrm{mmol}$) in THF (4 mL). After 35 min , the solvent was evaporated and the residue was purified by chromatography on silica, using $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}-0.88 \mathrm{NH}_{3}$ (193:7:1) as eluant, to give amine $\mathbf{4 8}$ ($480 \mathrm{mg}, 88 \%$) as a white foam. $\mathrm{R}_{\mathrm{f}} 0.5\left(\mathrm{CH}_{2} \mathrm{Cl} \mathrm{I}_{2}: \mathrm{MeOH}: 0.88 \mathrm{NH}_{3}, 93: 7: 1\right)$). ${ }^{1 \mathrm{H}}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.78(\mathrm{~m}, 0.25 \mathrm{H}), 0.96(\mathrm{~m}, 0.25 \mathrm{H}), 1.32-1.78(\mathrm{~m}$, $\sim 29 \mathrm{H}), 1.86(\mathrm{~m}, 3 \mathrm{H}), 2.45-3.17(\mathrm{~mm}, 3 \mathrm{H}), 3.17-3.87(\mathrm{~mm}$, $\sim 7.5 \mathrm{H}), 3.73(\mathrm{t}, 0.6 \mathrm{H}), 4.08(\mathrm{~m}, 0.6 \mathrm{H}), 4.29(\mathrm{~m}, 0.15 \mathrm{H}), 4.55$ $(\mathrm{m}, 0.5 \mathrm{H}), 4.78(\mathrm{~m}, 0.15 \mathrm{H}), 4.86(\mathrm{~m}, 0.5 \mathrm{H}), 5.03(\mathrm{~m}, 0.15 \mathrm{H})$, $7.24(\mathrm{~m}, 5 \mathrm{H}), 10.12(\mathrm{~m}, 1 \mathrm{H})$. LRMS: $\mathrm{m} / \mathrm{z} 602(\mathrm{M}+\mathrm{H})^{+}$.
$\mathrm{N}-[\mathrm{N}$-(t-Butoxycarbonylmethyl)-(R)-phenylalanyl]-2(RS)-\{2-[N-(N,N'-di-t-butoxy-carbonylamidino)-4piperidyloxy]ethyl\} piperidine (49). tert-Butyl bromoacetate ($126 \mu \mathrm{~L}, 0.86 \mathrm{mmol}$) was added to a stirred suspension of $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($215 \mathrm{mg}, 1.56 \mathrm{mmol}$) and amine $\mathbf{4 8}(470 \mathrm{mg}, 0.78 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$. After 14 h at $23^{\circ} \mathrm{C}$, the solvent was evaporated and the residue was partitioned between EtOAc and $\mathrm{H}_{2} \mathrm{O}$. The organic phase was washed with brine and dried over MgSO_{4}. Purification by chromatography on silica, using EtOAc-hexane ($7: 3$) as eluant, gave ester 49 ($480 \mathrm{mg}, 86 \%$) as a white foam. $\mathrm{R}_{\mathrm{f}} 0.28$ (EtOAc:hexane, 7:3). ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 0.24(\mathrm{~m}, 0.32 \mathrm{H}), 0.51(\mathrm{~m}, 0.28 \mathrm{H}), 1.03-1.97(\mathrm{~mm}$, $\sim 38 \mathrm{H}), 2.33(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.52(\mathrm{q}, 0.6 \mathrm{H}), 2.73-3.58(\mathrm{~mm}, \sim 10$ $\mathrm{H}), 3.72(\mathrm{~m}, 2 \mathrm{H}), 3.90(\mathrm{~m}, 1 \mathrm{H}), 4.57(\mathrm{~d}, 0.4 \mathrm{H}), 4.85(\mathrm{~m}, 0.6$ H), $7.20(\mathrm{~m}, 5 \mathrm{H}), 10.15(\mathrm{~d}, 1 \mathrm{H})$. LRMS: $\mathrm{m} / \mathrm{z} 716(\mathrm{M}+\mathrm{H})^{+}$.
$\mathrm{N}-[\mathrm{N}-(\alpha-\mathrm{F}$ luorenylmethoxycarbonyl)-O-t-butyl-(S)- $\alpha-$ aspartyl]-2(S)-\{2-[N-(N,N'-di-t-butoxycarbonylamidino)-4-piperidyloxylethyl\} piperidine (50a). DIPEA ($25 \mathrm{~mL}, 143$ mmol) was added to a stirred sol ution of amine $40 \mathrm{a}(22.9 \mathrm{~g}$, 47.7 mmol), F moc-Asp(OtBu)-OH ($19.6 \mathrm{~g}, 47.7 \mathrm{mmol}$), and PyBroP ($23.4 \mathrm{~g}, 50.1 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(160 \mathrm{~mL})$ under N_{2} at $0^{\circ} \mathrm{C}$, and the mixture was stirred for 3 h . After it was stirred for an additional 1 h at $23^{\circ} \mathrm{C}$, the reaction mixture was diluted with $\operatorname{EtOAc}(1 \mathrm{~L})$ and washed sequentially with water, aqueous citric acid (1 M), saturated aqueous NaHCO_{3} sol ution, water, and brine (200 mL each). The organic solution was dried (MSO_{4}) and evaporated under reduced pressure to give crude product (2.87 g), which was purified by chromatography on silica gel, using hexanes-EtOAc ($6: 4$ to $1: 1$) as eluant, to furnish amide 50a ($33.0 \mathrm{~g}, 77 \%$) as a white foam. $\mathrm{R}_{\mathrm{f}} 0.38$ (hexanes:EtOAc, 1:1). ${ }^{1} \mathrm{H}$ NR (CDCl_{3}): $\delta 1.47$ ($2 \times \mathrm{ss}, 29 \mathrm{H}$), $1.57-2.12(\mathrm{~mm}, 10 \mathrm{H}), 2.48(\mathrm{~m}, 0.8 \mathrm{H}), 2.70(\mathrm{~m}, 1.2 \mathrm{H}), 3.15$ $(\mathrm{m}, 0.4 \mathrm{H}), 3.23-3.60(\mathrm{~mm}, 5.6 \mathrm{H}), 3.95(\mathrm{~m}, 3 \mathrm{H}), 4.13-4.58$
(mm, 3.4 H), $4.85(\mathrm{~m}, 0.6 \mathrm{H}), 5.01(\mathrm{~m}, 1 \mathrm{H}), 5.65(\mathrm{~d}, 0.6 \mathrm{H})$, 5.85 (d, 0.4 H), 7.30 (t, 2 H), 7.40 (t, 2 H), 7.59 (d, 2 H), 7.76 ($\mathrm{d}, 2 \mathrm{H}$), $10.10(\mathrm{~d}, 1 \mathrm{H})$. LRMS: m/z $849.3(\mathrm{M}+\mathrm{H})^{+}, 670,626.7$ (M-F moc $+2 \mathrm{H})^{+}$. Anal. $\left(\mathrm{C}_{46} \mathrm{H}_{65} \mathrm{~N}_{5} \mathrm{O}_{10} \cdot 0.4 \mathrm{EtOAc}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

N-[N-(α-Fluorenylmethoxycarbonyl)-O-t-butyl-(S)- $\alpha-$ aspartyl]-2(RS)-\{ 2 -[$\mathrm{N}-\left(\mathrm{N}, \mathrm{N}^{\prime}-\mathrm{di}-\mathrm{t}\right.$-butoxycarbonylamidino)-4-piperidyloxy]ethyl\}piperidine (50b). Coupling of amine $\mathbf{4 0 b}(5.00 \mathrm{~g}, 11.0 \mathrm{mmol})$ with $\mathrm{Fmoc}-\mathrm{Asp}(\mathrm{OtBu})$-OH ($4.75 \mathrm{~g}, 11.5$ $\mathrm{mmol})$ in the presence of PyBroP ($5.38 \mathrm{~g}, 11.5 \mathrm{mmol}$) and DIPEA ($3.83 \mathrm{~mL}, 22 \mathrm{mmol}$) by the procedure described for 50a gave 50b ($6.05 \mathrm{~g}, 65 \%$) as a gum. $\mathrm{R}_{\mathrm{f}} 0.68\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}, 90\right.$: 10). ${ }^{1 \mathrm{H}}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: consistent with that of 50a. LRMS: m / z $849(\mathrm{M}+\mathrm{H})^{+}$

N-(O-t-Butyl-(S)- α-aspartyl)-2(S)-\{ 2-[N-(N,N'-di-t-butoxycarbonylamidino)-4-piperidyloxy]ethyl\}piperidine (51a). Piperidine ($1.7 \mathrm{~mL}, 18.3 \mathrm{mmol}$) was added to a stirred solution of Fmoc-amine $\mathbf{5 0 a}(1.55 \mathrm{~g}, 1.83 \mathrm{mmol})$ in THF (7.5 mL). After 1 h , the reaction mixture was evaporated under reduced pressure and the residue was purified by chromatography on silica gel, using $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}-0.88 \mathrm{NH}_{3}(193: 7: 1)$ as eluant, to afford amine 51a ($1.05 \mathrm{~g}, 92 \%$) as a white foam. $\mathrm{R}_{\mathrm{f}} 0.50\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: 0.88 \mathrm{NH}_{3}, 93: 7: 1\right)$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: 1.30-2.17 (mm, 41 H$), 2.42(\mathrm{~m}, 1 \mathrm{H}), 2.55(\mathrm{~m}, 1.5 \mathrm{H}), 3.12(\mathrm{t}$, $0.5 \mathrm{H}), 3.36(\mathrm{~m}, 3 \mathrm{H}), 3.47(\mathrm{~m}, 2 \mathrm{H}), 3.72(\mathrm{~m}, 2.5 \mathrm{H}), 4.08$ (m, $0.5 \mathrm{H}), 4.23(\mathrm{~m}, 1 \mathrm{H}), 4.52(\mathrm{~d}, 0.5 \mathrm{H}), 4.85(\mathrm{~m}, 0.5 \mathrm{H}), 10.09(\mathrm{~s}$, $1 \mathrm{H})$. LRMS: m/z $626(\mathrm{M}+\mathrm{H})^{+}$. Anal. $\left(\mathrm{C}_{31} \mathrm{H}_{55} \mathrm{~N}_{5} \mathrm{O}_{8} \cdot 0.3 \mathrm{H}_{2} \mathrm{O}\right)$ C, H, N

N-(O-t-Butyl-(S)- α-aspartyl)-2(RS)-\{2-[N-(N,N'-di-t-butoxycarbonylamidino)-4-piperidyloxy]ethyl\}piperidine (51b). Treatment of F moc-amine 51b ($6.05 \mathrm{~g}, 7.10 \mathrm{mmol}$) with piperidine by the procedure described for 5la gave 51b ($3.71 \mathrm{~g}, 84 \%$) as a foam. $\mathrm{R}_{\mathrm{f}} 0.52\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}, 90: 10\right) .{ }^{1 \mathrm{H}}$ NMR (CDCl_{3}): consistent with that of 51a. LRMS: m/z 626 $(M+H)^{+}$

General Procedure for the Preparation of Amines 52. $\mathrm{NaBH}(\mathrm{OAc})_{3}(15.0 \mathrm{mmol})$ was added, in one portion, to a stirred solution of amine 51 (10.0 mmol), ketone/aldehyde (12.0 mmol), and $\mathrm{AcOH}(11.0 \mathrm{mmol})$ in THF (65 mL) under N_{2} at $23^{\circ} \mathrm{C}$, and the mixture was stirred for 2 h (monitored by TLC). The reaction mixture was evaporated in vacuo, diluted with EtOAc (100 mL), washed with saturated aqueous NaHCO_{3} solution and brine (100 mL each), dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated under reduced pressure to leave the crude product. Purification by chromatography on silica gel, using $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ MeOH or hexanes-EtOAc as eluant, gave amine 52.

N-(N-Cyclohexyl-O-t-butyl-(S)- α-aspartyl)-2(RS)-\{2-[N(N, N '-di-t-butoxycarbonyl-amidino)-4-piperidyloxy]ethyl\}piperidine (52a). Alkylation of amine 51b ($420 \mathrm{mg}, 0.67$ mmol) with cyclohexanone ($73 \mathrm{mg}, 0.74 \mathrm{mmol}$) in the presence of $\mathrm{NaBH}(\mathrm{OAc})_{3}(213 \mathrm{mg}, 1.01 \mathrm{mmol})$ and $\mathrm{AcOH}(0.038 \mathrm{~mL}, 0.67$ mmol) by the general procedure gave sec-amine 52a (412 mg , $87 \%)$ as a white foam. $\mathrm{R}_{\mathrm{f}} 0.70\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: 0.88 \mathrm{NH}_{3}, 90: 10\right.$: 1). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.95-2.04(\mathrm{~mm}, 20 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H})$, 1.45 (s, 18 H), 2.12-2.75 (mm, 4 H), 3.10 (m, 0.6 H), 3.243.90 (mm, 9 H$), 4.03-4.31(\mathrm{~mm}, 2 \mathrm{H}), 4.50(\mathrm{br} \mathrm{d}, 0.4 \mathrm{H}), 4.87$ (br s, 0.6 H), 10.12 (br s, 1 H). LRMS: m/z 708.7 (M + H) ${ }^{+}$.

N-(N-Cyclopentyl-O-t-butyl-(S)- α-aspartyl)-2(RS)-\{2[N -($\mathrm{N}, \mathrm{N}^{\prime}$-di-t-butoxycarbonyl-amidino)-4-piperidyloxy]ethyl \}piperidine (52b). Alkylation of amine 51b (200 mg , 0.32 mmol) with cyclopentanone ($60 \mathrm{mg}, 0.70 \mathrm{mmol}$) in the presence of $\mathrm{NaBH}(\mathrm{OAc})_{3}(102 \mathrm{mg}, 0.48 \mathrm{mmol})$ and $\mathrm{AcOH}(0.018$ $\mathrm{mL}, 0.32 \mathrm{mmol}$) by the general procedure gave sec-amine 52 b ($185 \mathrm{mg}, 83 \%$) as a gum. $\mathrm{R}_{\mathrm{f}} 0.56\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: 0.88 \mathrm{NH}_{3}, 90\right.$: 10:1). ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 1.20-2.05(\mathrm{~mm}, 21 \mathrm{H}), 1.41$ ($2 \mathrm{xs}, 9$ $\mathrm{H}), 1.46(\mathrm{~s}, 18 \mathrm{H}), 2.24-4.37(\mathrm{~mm}, 13 \mathrm{H}), 4.50(\mathrm{br} \mathrm{d}, 0.4 \mathrm{H})$, 4.88 (br s, 0.6 H), 10.12 (br s, 1 H). LRMS: m/z 694.5 (M + H) ${ }^{+}$

N-(N-Cycloheptyl-O-t-butyl-(S)- α-aspartyl)-2(S)-\{2-[N($\mathrm{N}, \mathrm{N}^{\prime}$-di-tert-butoxycarbonyl-amidino)-4-piperidyloxy]ethyl\}piperidine (52c). Alkylation of amine 51a (700 mg , 1.12 mmol) with cycloheptanone ($376 \mathrm{mg}, 3.36 \mathrm{mmol}$) in the presence of $\mathrm{NaBH}(\mathrm{OAc})_{3}(711 \mathrm{mg}, 3.36 \mathrm{mmol})$ and $\mathrm{AcOH}(0.192$ $\mathrm{mL}, 3.36 \mathrm{mmol}$) by the general procedure gave sec-amine 52c ($740 \mathrm{mg}, 92 \%$). $\mathrm{R}_{\mathrm{f}} 0.56\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: 0.88 \mathrm{NH}_{3}, 90: 10: 1\right.$); $[\alpha]_{\mathrm{D}}$
$-5.7^{\circ}(\mathrm{c}=2.45, \mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.20-2.05(\mathrm{~mm}$, 26 H), 1.44 (s, 9 H), 1.49 ($2 \mathrm{xs}, 18 \mathrm{H}$), 2.26-2.52 (mm, 3 H), $2.68(\mathrm{t}, 0.4 \mathrm{H}), 3.10(\mathrm{t}, 0.6 \mathrm{H}), 3.30-3.58(\mathrm{~mm}, 5 \mathrm{H}), 3.66-$ $4.04(\mathrm{~mm}, 4 \mathrm{H}), 4.18(\mathrm{br} \mathrm{s}, 0.4 \mathrm{H}), 4.53(\mathrm{br} \mathrm{d}, 0.4 \mathrm{H}), 4.88(\mathrm{br}$ $\mathrm{s}, 0.6 \mathrm{H}), 10.1(\mathrm{br} \mathrm{d}, 1 \mathrm{H})$. LRMS: m/z $722.9(\mathrm{M}+\mathrm{H})^{+}$

N-(N-Cyclooctyl-O-t-butyl-(S)- α-aspartyl)-2(RS)-\{ 2-[N(N, N '-di-t-butoxycarbonyl-amidino)-4-piperidyloxy]ethyl\}piperidine (52d). Alkylation of amine 51b ($280 \mathrm{mg}, 0.45$ mmol) with cyclooctanone ($282 \mathrm{mg}, 2.24 \mathrm{mmol}$) in the presence of $\mathrm{NaBH}(\mathrm{OAC})_{3}(474 \mathrm{mg}, 2.24 \mathrm{mmol})$ and $\mathrm{AcOH}(0.128 \mathrm{~mL}, 2.24$ mmol) by the general procedure gave sec-ami ne 52d (160 mg , 49%) as an oil. $\mathrm{R}_{\mathrm{f}} 0.58\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: 0.88 \mathrm{NH}_{3}, 90: 10: 1\right)$. ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 1.20-2.08(\mathrm{~mm}, 27 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}), 1.45(\mathrm{~s}$, 18 H), 2.10-2.73 (mm, 3 H), 3.01-4.37 (mm, 10 H), 4.50 (br d, 0.4 H), 4.88 (br s, 0.6 H), 10.1 (br s, 1 H). LRMS: m/z 737 $(\mathrm{M}+\mathrm{H})^{+}$
N-(N-3-Pentyl-O-t-butyl-(S)- α-aspartyl)-2(S)-\{2-[N-(N,N'-di-t-butoxycarbonyl-amidino)-4-piperidyloxy]ethyl\}piperidine (52e). Alkylation of amine 51a ($300 \mathrm{mg}, 0.479$ mmol) with 3-pentanone ($273 \mathrm{mg}, 3.16 \mathrm{mmol}$) in the presence of $\mathrm{NaBH}(\mathrm{OAC})_{3}(456 \mathrm{mg}, 2.15 \mathrm{mmol})$ and $\mathrm{AcOH}(0.081 \mathrm{~mL}, 1.44$ mmol) by the general procedure gave sec-amine 52e (68 mg , 20\%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.88(\mathrm{~m}, 6 \mathrm{H}), 1.2-2.46(\mathrm{~mm}, 19$ H), 1.43 (s, 9 H), 1.49 (18 H), 2.67 ($\mathrm{t}, 0.4 \mathrm{H}$), $3.11(\mathrm{t}, 0.6 \mathrm{H})$, 3.26-4.28 (mm, 10 H), 4.51 (br d, 0.4 H), 4.86 (br s, 0.6 H), 10.06 (br d, 1 H). LRMS: m/z 696.2 (M + H) ${ }^{+}$.

N-(N-Cyclohexyl-O-t-butyl-(S)- α-aspartyl)-2(S)-\{ 2-[N(N, N '-di-t-butoxycarbonyl-amidino)-4-piperidyloxy]ethyl\}piperidine (52f). Alkylation of amine 51a ($688 \mathrm{mg}, 1.10$ mmol) with cyclohexanone ($0.137 \mathrm{~mL}, 1.32 \mathrm{mmol}$) in the presence of $\mathrm{NaBH}(\mathrm{OAC})_{3}(350 \mathrm{mg}, 1.65 \mathrm{mmol})$ and $\mathrm{AcOH}(0.069$ $\mathrm{mL}, 1.21 \mathrm{mmol}$) by the general procedure gave sec-amine 52 f ($745 \mathrm{mg}, 96 \%$) as a white foam. $\mathrm{R}_{\mathrm{f}} 0.80\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}\right.$: $\left.0.88 \mathrm{NH}_{3}, 93: 7: 1\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.94-2.10(\mathrm{~mm}, \sim 50$ H), 2.10-2.52 (mm, 2.6 H$), 2.68(\mathrm{t}, 0.4 \mathrm{H}), 3.11(\mathrm{t}, 0.6 \mathrm{H}), 3.40$ ($2 x \mathrm{~m}, 5 \mathrm{H}$), 3.55 ($2 \mathrm{xm}, 2.6 \mathrm{H}$), 4.03 (t, 1 H), 4.20 (m, 0.4 H), 4.52 (d, 0.4 H), 4.88 (m, 0.6 H), 10.11 (d, 1 H$).$ LRMS: m/z $708(\mathrm{M}+\mathrm{H})^{+}$
N-(N-Cyclohept-4-enyl-O-t-butyl-(S)- α-aspartyl)-2(S)-\{2-[N-(N,N'-di-tert-butoxy-carbonylamidino)-4-piperidyloxylethyl\}piperidine (52g). Alkylation of amine 51a (600 $\mathrm{mg}, 0.959 \mathrm{mmol}$) with 4 -cycl oheptenone ${ }^{33}$ ($320 \mathrm{mg}, 2.90 \mathrm{mmol}$) in the presence of $\mathrm{NaBH}(\mathrm{OAC})_{3}(610 \mathrm{mg}, 2.90 \mathrm{mmol})$ and AcOH $(0.165 \mathrm{~mL}, 2.90 \mathrm{mmol})$ by the general procedure gave secamine $\mathbf{5 2 g}$ ($600 \mathrm{mg}, 87 \%$) as a foam. $\mathrm{R}_{\mathrm{f}} 0.39$ (hexanes:EtOAc, $1: 1) ;[\alpha]_{\mathrm{D}}-0.2^{\circ}(\mathrm{c}=0.50, \mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.20-$ 2.06 (m, 20 H), 1.40 ($\mathrm{s}, 9 \mathrm{H}$), 1.50 ($\mathrm{s}, 18 \mathrm{H}$), 2.14-2.66 (m, 4 H), 2.68 (t, 0.4 H), 3.13 (t, 0.6 H), 3.31-3.58 (m, 5 H), 3.75 (br s, 2 H), 3.86 (d, 0.6 H), 4.04 (t, 1 H), 4.21 (br s, 0.4 H), 4.53 (d, 0.4 H), 4.87 (br s, 0.6 H), 5.72 (s, 2 H), 10.02 (vbr s, 1 H). LRMS: m/z $720.4(\mathrm{M}+\mathrm{H})^{+}, 578.4,503.0,478.3$. Anal. $\left(\mathrm{C}_{38} \mathrm{H}_{65} \mathrm{~N}_{5} \mathrm{O}_{8}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

N-[(N-Cyclohexylmethyl)-O-t-butyl-(S)- α-aspartyl]-2(RS)-\{2-[N-(N,N'-di-t-butoxy-carbonylamidino)-4-piperidyloxy]ethyl\}piperidine (52h). Alkylation of amine 51b (276 $\mathrm{mg}, 0.441 \mathrm{mmol}$) with cycl ohexanecarboxaldehyde (0.107 mL , 0.88 mmol) in the presence of $\mathrm{NaBH}(\mathrm{OAc})_{3}(185 \mathrm{mg}, 0.88$ mmol) by the general procedure gave cyd ohexylmethylamines 52h ($137 \mathrm{mg}, 43 \%$) as a foam. $\mathrm{R}_{\mathrm{f}} 0.30$ (hexanes:EtOAc, 1:1). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.78-0.97(\mathrm{~m}, 2 \mathrm{H}), 1.07-2.07(\mathrm{~m}, 23 \mathrm{H})$, 1.44 (s, 9 H), 1.48 (s, 18 H), 2.12-2.72 (m, 3.4 H), 3.13 ($q, 0.6$ H), 3.28-3.60 (m, 4.8 H), 3.66-3.97 (m, 3.2 H), 4.22 (br s, 0.4 H), 4.36 (br s, 0.4 H$), 4.55(\mathrm{br} \mathrm{s}, 0.6 \mathrm{H}), 4.87$ (br s, 0.6 H$)$, 10.10 (vbr s, 1 H). LRMS: m/z $722.3(\mathrm{M}+\mathrm{H})^{+}$, 622.7, 580.6, 480.6.

N-(N-Benzyl-O-t-butyl-(S)- α-aspartyl)-2(S)-\{2-[N($\mathrm{N}, \mathrm{N}^{\prime}$-di-t-butoxycarbonylamidino)-4-piperidyloxy]ethyl\}piperidine (52i). Alkylation of amine 51a ($502 \mathrm{mg}, 0.802$ $\mathrm{mmol})$ with benzal dehyde $(0.90 \mathrm{~mL}, 0.88 \mathrm{mmol})$ in the presence of $\mathrm{NaBH}(\mathrm{OAc})_{3}(258 \mathrm{mg}, 1.22 \mathrm{mmol})$ by the general procedure gave benzylamine 52i ($394 \mathrm{mg}, 66 \%$) as a foam. $\mathrm{R}_{\mathrm{f}} 0.31$ (hexanes:EtOAc, 1:1); $[\alpha]_{D}-11.3^{\circ}(c=0.16, \mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.30-2.02(\mathrm{~m}, 13 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.47(\mathrm{~s}, 18 \mathrm{H})$, 2.33-2.54 (m, 2 H), 2.67 (t, 0.4 H), 3.05 (t, 0.6 H), 3.28-3.83
(m, 9.4 H$), 3.93$ (t, 0.6 H), 4.05 (dd, 0.4 H), $4.15(\mathrm{br} \mathrm{s}, 0.4 \mathrm{H})$, 4.55 (d, 0.6 H), 4.88 (br s, 0.6 H), 7.15-7.38 (m, 5 H), 10.10 (vbr s, 1 H). LRMS: m/z $716.6(\mathrm{M}+\mathrm{H})^{+}, 616.6,574.6,499.6$, 322.3, 238.3. Anal. ($\mathrm{C}_{38} \mathrm{H}_{61} \mathrm{~N}_{5} \mathrm{O}_{8} \cdot \mathrm{O}_{3} \mathrm{CH}_{2} \mathrm{Cl}_{2}$) C, H, N.

N-[N-(4-Tetrahydropyranyl)-O-t-butyl-(S)- α-aspartyl]-2(RS)-\{2-[N-(N,N'-di-t-butoxy-carbonylamidino)-4piperidyloxy]ethyl\}piperidine (52j). Alkylation of amine 51b ($200 \mathrm{mg}, 0.32 \mathrm{mmol}$) with 4-tetrahydropyranone (35 mg , 0.48 mmol) in the presence of $\mathrm{NaBH}(\mathrm{OAc})_{3}(102 \mathrm{mg}, 0.48$ mmol) and $\mathrm{AcOH}(0.018 \mathrm{~mL}, 0.32 \mathrm{mmol})$ by the general procedure gave sec-amine 52 j ($180 \mathrm{mg}, 79 \%$). $\mathrm{R}_{\mathrm{f}} 0.60\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$: $\mathrm{MeOH}: 0.88 \mathrm{NH}_{3}, 90: 10: 1$). ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 1.22-2.08(\mathrm{~mm}$, $16 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}), 1.47(\mathrm{~s}, 18 \mathrm{H}), 2.1-2.74(\mathrm{~mm}, 4 \mathrm{H}), 3.03-$ 4.32 (mm, 14 H), 4.5 (br d, 0.25 H$), 4.8(\mathrm{br} \mathrm{s}, 0.75 \mathrm{H}), 10.1$ (br $\mathrm{s}, 1 \mathrm{H})$. LRMS: m/z $710.5(\mathrm{M}+\mathrm{H})^{+}$.

N-[N-(3-Tetrahydropyranyl)-O-t-butyl-(S)- α-aspartyl]-2(S)-\{2-[N-(N,N'-di-t-butoxycarbonylamidino)-4piperidyloxy]ethyl\}piperidine (52k). Alkylation of amine 51a ($300 \mathrm{mg}, 0.479 \mathrm{mmol}$) with 3-tetrahydropyranone ${ }^{34}$ (116 $\mathrm{mg}, 1.15 \mathrm{mmol}$) in the presence of $\mathrm{NaBH}(\mathrm{OAc})_{3}(297 \mathrm{mg}, 1.40$ mmol) and AcOH ($0.027 \mathrm{~mL}, 0.32 \mathrm{mmol}$) by the general procedure gave sec-amine 52k ($221 \mathrm{mg}, 65 \%$) as a white foam. $\mathrm{R}_{\mathrm{f}} 0.79\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}, 90: 10\right)$. ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 1.20-2.05$ (m, 43 H$), 2.17-2.75(\mathrm{~m}, 3 \mathrm{H}), 2.92-3.20(\mathrm{~m}, 2 \mathrm{H}) ; 3.22-3.60$ $(\mathrm{m}, 6 \mathrm{H}), 3.68-4.08(\mathrm{~m}, 5 \mathrm{H}), 4.10-4.56(\mathrm{~m}, 1 \mathrm{H}), 4.82-4.92$ (m, 1 H), 10.08 (br s, 1 H). Anal. $\left(\mathrm{C}_{36} \mathrm{H}_{63} \mathrm{~N}_{5} \mathrm{O} 9 \cdot 0.2 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \mathrm{C}$, H, N.

N-[N-(N-Methyl-4-piperidyl)-O-t-butyl-(S)- α-aspartyl]-2(RS)-\{2-[N-(N,N'-di-t-butoxy-carbonylamidino)-4piperidyloxy]ethyl\}piperidine (521). Alkylation of amine 51b ($500 \mathrm{mg}, 0.80 \mathrm{mmol}$) with N -methyl-4-piperidone (0.11 $\mathrm{mL}, 0.90 \mathrm{mmol}$) in the presence of $\mathrm{NaBH}(\mathrm{OAC})_{3}(254 \mathrm{mg}, 1.12$ mmol) and $\mathrm{AcOH}(96 \mu \mathrm{~L}, 1.66 \mathrm{mmol})$ by the general procedure gave sec-amine 521 ($510 \mathrm{mg}, 86 \%$) as a white foam. $\mathrm{R}_{\mathrm{f}} 0.50$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: 0.88 \mathrm{NH}_{3}, 93: 7: 2\right)$. ${ }^{1 \mathrm{H}} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.20-1.98$ ($\mathrm{m}, 45 \mathrm{H}$), 2.25-2.35 (m, 3H), 2.50-4.90 (m, 15 H). Anal. $\left(\mathrm{C}_{37} \mathrm{H}_{66} \mathrm{~N}_{6} \mathrm{O}_{8} \cdot \mathrm{O}_{2} \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

General Procedure for the Preparation of N-Methyl Amines 53. A sol ution of amine $52(1.04 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15$ mL) was vigorously stirred with aqueous formaldehyde (37%, $\mathrm{w} / \mathrm{v} ; 0.34 \mathrm{~mL}, 4.15 \mathrm{mmol}$) for $1 \mathrm{~h} . \mathrm{NaBH}(\mathrm{OAc})_{3}(2.08 \mathrm{mmol})$ was added, and stirring was continued for 1 h . The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$, washed sequentially with saturated aqueous NaHCO_{3} solution (10 mL), dried (MgSO_{4}), and evaporated under reduced pressure to leave the crude product. Purification by chromatography on silica gel, using $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ or hexanes-EtOAc as eluant, gave amine 53.

N-(N-Cycloheptyl-N-methyl-O-t-butyl-(S)- α-aspartyl)-2(S)-\{2-[N-(N,N'-di-t-butoxy-carbonylamidino)-4piperidyloxy]ethyl\}piperidine (53c). Methylation of amine 52c ($420 \mathrm{mg}, 0.58 \mathrm{mmol}$) with 37% aqueous formaldehyde ($0.065 \mathrm{~mL}, 0.80 \mathrm{mmol}$) in the presence of $\mathrm{NaBH}(\mathrm{OAc})_{3}(185$ $\mathrm{mg}, 0.87 \mathrm{mmol}$) by the general procedure gave tert-amine 53c ($390 \mathrm{mg}, 91 \%$). $\mathrm{R}_{\mathrm{f}} 0.74\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: 0.88 \mathrm{NH}_{3}, 90: 10: 1\right.$). ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 1.2-2.1(\mathrm{~mm}, 24 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}), 1.48(\mathrm{~s}, 18$ $\mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{dd}, 1 \mathrm{H}), 2.65(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.89(\mathrm{dd}, 1 \mathrm{H})$, 3.05 (t, 1 H), 3.29-3.56(mm, 5 H), 3.74 (br s, 2 H), 4.00 (m, 2 H), 4.79 (br s, 1 H), 10.08 (br s, 1 H). LRMS: m/z 736.6 (M + H) ${ }^{+}$

N-(N-Cyclohexyl-N-methyl-O-t-butyl-(S)- α-aspartyl)-2(S)-\{2-[N-(N,N'-di-t-butoxy-carbonylamidino)-4-piperidyloxy]ethyl\}piperidine (53f). Methylation of amine 52 f (735 $\mathrm{mg}, 1.04 \mathrm{mmol}$) with 37% aqueous formal dehyde (0.34 mL , 4.15 mmol) in the presence of $\mathrm{NaBH}(\mathrm{OAc})_{3}(440 \mathrm{mg}, 2.08 \mathrm{mmol})$ by the general procedure gave tert-amine 53 f ($720 \mathrm{mg}, 96 \%$) as a white foam. $\mathrm{R}_{\mathrm{f}} 0.32\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: 0.88 \mathrm{NH}_{3}, 193: 7: 1\right)$. ${ }^{1 \mathrm{H}}$ NMR (CDCl_{3}): $\delta 1.00-1.94(\mathrm{~mm}, \sim 50 \mathrm{H}), 2.02(\mathrm{~m}, 1 \mathrm{H}), 2.19$ ($\mathrm{s}, 3 \mathrm{H}$), 2.31 (m, 2 H$), 2.64(\mathrm{~m}, 0.2 \mathrm{H}), 2.97(\mathrm{~m}, 1.8 \mathrm{H}), 3.37$ $(\mathrm{m}, 4 \mathrm{H}), 3.48(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{~m}, 2 \mathrm{H}), 4.08(\mathrm{~m}, 2 \mathrm{H}), 4.30(\mathrm{~m}$, $0.2 \mathrm{H}), 4.48(\mathrm{~m}, 0.2 \mathrm{H}), 4.80(\mathrm{~m}, 1 \mathrm{H}), 10.00(\mathrm{~s}, 1 \mathrm{H})$. LRMS: $\mathrm{m} / \mathrm{z} 722(\mathrm{M}+\mathrm{H})^{+}$. Anal. $\left(\mathrm{C}_{38} \mathrm{H}_{67} \mathrm{~N}_{5} \mathrm{O}_{8} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

N-(N-Cyclohept-4-enyl-N-methyl-O-t-butyl-(S)- α-aspart-yl)-2(S)-\{2-[N-(N,N'-di-t-butoxycarbonylamidino)-4-piperid-
yloxy]ethyl\}piperidine (53g). Methylation of amine $\mathbf{5 2 g}$ ($346 \mathrm{mg}, 0.481 \mathrm{mmol}$) with 37% aqueous formal dehyde (0.065 $\mathrm{mL}, 0.80 \mathrm{mmol}$) in the presence of $\mathrm{NaBH}(\mathrm{OAc})_{3}(204 \mathrm{mg}, 0.96$ mmol) by the general procedure gave tert-amine 53 g (309 mg , $87 \%)$. $\mathrm{R}_{\mathrm{f}} 0.66\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}, 90: 10\right) ;[\alpha]_{D}-20.6^{\circ}(\mathrm{c}=0.53$, $\mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.30-2.4(\mathrm{~mm}, \sim 23 \mathrm{H}), 1.44(\mathrm{~s}, 9$ $\mathrm{H}), 1.50(\mathrm{~s}, 18 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.68(\mathrm{~m}, 0.6 \mathrm{H}), 2.92$ (dd, 0.6 H), $3.05(\mathrm{t}, 0.6 \mathrm{H}), 3.3-3.54(\mathrm{~mm}, 5 \mathrm{H}), 3.74(\mathrm{~m}, 2 \mathrm{H}), 4.05$ (br d, 1.6 H), 4.7 (br s, 0.6 H$), 5.73$ (s, 2 H), 10.04 (br s, 1 H). LRMS: m/z $734(\mathrm{M}+\mathrm{H})^{+}$. Anal. $\left(\mathrm{C}_{39} \mathrm{H}_{67} \mathrm{~N}_{5} \mathrm{O}_{8} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}$, N.

N-[N-Methyl-N-(3-tetrahydropyranyl)-O-t-butyl-(S)- α -aspartyl]-2(S)-\{2-[N-(N,N'-di-t-butoxycarbonylamidino)-4-piperidyloxy]ethyl\}piperidine (53k). Methylation of amine 52k ($208 \mathrm{mg}, 0.293 \mathrm{mmol}$) with 37% aqueous formaldehyde ($0.095 \mathrm{~mL}, 1.17 \mathrm{mmol}$) in the presence of $\mathrm{NaBH}(\mathrm{OAC})_{3}(124$ $\mathrm{mg}, 0.586 \mathrm{mmol})$ by the general procedure gave tert-amine 53k ($185 \mathrm{mg}, 87 \%$) as a white solid. $\mathrm{R}_{\mathrm{f}} 0.83\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}\right.$: $\left.0.88 \mathrm{NH}_{3}, 90: 10: 1\right)$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.22-2.12(\mathrm{~m}, 43 \mathrm{H})$, $2.21-2.23(\mathrm{~m}, 3 \mathrm{H}), 2.50-2.68(\mathrm{~m}, 1 \mathrm{H}), 2.90-3.55(\mathrm{~m}, 9 \mathrm{H})$, 3.68-3.90 (m, 4 H), 3.91-4.53 (m,3H), 4.76-4.88(m, 1 H), 10.02 (br s, 1 H). LRMS: m/z $723.8(\mathrm{M} \mathrm{+} \mathrm{H})^{+}$. Anal. $\left(\mathrm{C}_{37} \mathrm{H}_{65} \mathrm{~N}_{5} \mathrm{O} 9 \cdot 0.2 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

N-(N-Cyclohexyl-N-ethyl-O-t-butyl-(S)- α-aspartyl)-2(RS)-\{2-[N -(N,N'-di-t-butoxy-carbonylamidino)-4-piperidyloxy]ethyl\}piperidine (54). A solution of acetaldehyde in THF (1 $\mathrm{M} ; 0.97 \mathrm{~mL}, 0.97 \mathrm{mmol}$) was added to a stirred solution of amine 52a ($328 \mathrm{mg}, 0.463 \mathrm{mmol}$) in THF (7 mL) at $23^{\circ} \mathrm{C}$, and after $30 \mathrm{~min}, \mathrm{NaBH}(\mathrm{OAC})_{3}(216 \mathrm{mg}, 1.02 \mathrm{mmol})$ was added. After 18 h , a second portion of the acetaldehyde solution (1 $\mathrm{M} ; 0.34 \mathrm{~mL}, 0.34 \mathrm{mmol}$) and $\mathrm{NaBH}(\mathrm{OAc})_{3}(72 \mathrm{mg}, 0.34 \mathrm{mmol})$ were added, the reaction mixture was stirred for 3 h and then evaporated under reduced pressure. The residual solid was partitioned between EtOAc and water, and the organic phase was separated, washed sequentially with saturated aqueous NaHCO_{3} solution and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated under reduced pressure. The crude product was purified by chromatography on silica gel, using hexanes-EtOAc (1:1) as eluant, to provide ethylamine 54 ($193 \mathrm{mg}, 56 \%$) as a white foam. $\mathrm{R}_{\mathrm{f}} 0.87$ (EtOAc). ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 1.04$ (t, 3 H), 1.12$2.18(\mathrm{~m}, 49 \mathrm{H}), 2.28-3.11(\mathrm{~m}, 5 \mathrm{H}), 3.26-3.88(\mathrm{~m}, 7 \mathrm{H}), 4.08-$ $4.19(\mathrm{~m}, 2 \mathrm{H}), 4.43-4.86(\mathrm{~m}, 1 \mathrm{H})$. LRMS: $\mathrm{m} / \mathrm{z} 736.3(\mathrm{M}+\mathrm{H})^{+}$. Anal. ($\mathrm{C}_{39} \mathrm{H}_{69} \mathrm{~N}_{5} \mathrm{O}_{8} \cdot 0.2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$) C, H, N.

N-\{N-Cyclohexyl-N-[2-(dimethylamino)ethyl]-O-t-but-yl-(S)- α-aspartyl $\}-2(R S)-\{2-[N-(N, N '-d i-t-b u t o x y c a r b o n y l-~$ amidino)-4-piperidyloxy]ethyl\} piperidine (55). Solid K 2^{-} $\mathrm{CO}_{3}(228 \mathrm{mg}, 1.64 \mathrm{mmol})$ and then 2-(dimethylamino)ethyl chloride hydrochloride ($119 \mathrm{mg}, 0.826 \mathrm{mmol}$) were added to a solution of amine 52a ($328 \mathrm{mg}, 0.55 \mathrm{mmol}$) in $\mathrm{MeCN}(10 \mathrm{~mL})$ at $23^{\circ} \mathrm{C}$, and the mixture was heated at $50^{\circ} \mathrm{C}$ for 18 h and then evaporated under reduced pressure. The residual solid was partitioned between EtOAc and water, and the organic phase was separated, washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated under reduced pressure. The crude product was purified by chromatography on silica gel, using an elution gradient of $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ (100:0 to 95:5), to provide diamine 55 (400 mg, 93\%) as an oil. $\mathrm{R}_{\mathrm{f}} 0.39\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: 0.88 \mathrm{NH}_{3}\right.$, 95:5:0.1). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.95-2.18(\mathrm{~m}, 49 \mathrm{H}), 2.20-2.75$ ($\mathrm{m}, 10 \mathrm{H}$), 3.03-4.98 (m, 14 H). LRMS: m/z $779(\mathrm{M}+\mathrm{H})^{+}$.

N -[N -(α-Fluorenylmethoxycarbonyl)-O-t-butyl-(S)- α -glutamyl]-2(S)-\{2-[N-(N,N'-di-t-butoxycarbonylamidino)-4-piperidyloxy]ethyl\}piperidine (56). Coupling of amine 40a ($1.074 \mathrm{~g}, 2.36 \mathrm{mmol}$) with Fmoc-Glu(OtBu)-OH (1.012 g , 2.38 mmol) in the presence of PyBroP ($1.171 \mathrm{~g}, 2.51 \mathrm{mmol}$) and DIPEA ($1.23 \mathrm{~mL}, 7.06 \mathrm{mmol}$) by the procedure described for 50a gave 56 ($1.368 \mathrm{~g}, 67 \%$) as a white foam. $\mathrm{R}_{\mathrm{f}} 0.47$ (hexanes:EtOAc, 1:1); $[\alpha]_{\mathrm{D}}-8.6^{\circ}(\mathrm{c}=0.78, \mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.30-2.14(\mathrm{~m}, 15 \mathrm{H}), 1.43(\mathrm{~s}, 18 \mathrm{H}), 1.50(\mathrm{~s}, 9 \mathrm{H})$, 2.18-2.42 (m, 2 H), $2.68(\mathrm{t}, 0.5 \mathrm{H}), 3.15(\mathrm{t}, 0.5 \mathrm{H}), 3.24-3.55$ $(\mathrm{m}, 4 \mathrm{H}), 3.63-3.88(\mathrm{~m}, 2 \mathrm{H}), 4.15-4.54(\mathrm{~m}, 4 \mathrm{H}), 4.73(\mathrm{br} \mathrm{s}, 1$ $\mathrm{H}), 4.87$ (br s, 1 H), 5.75 (br s, 1 H), 7.30 (t, 2 H), 7.39 (t, 2 H), 7.60 (d, 2 H), 7.75 (d, 2 H), 10.02 (br s, 1 H). LRMS: m/z 864, $862(\mathrm{M}+\mathrm{H})^{+}, 721,640(\mathrm{M}-\mathrm{F} \mathrm{moc}+2 \mathrm{H})^{+}$. Anal. $\left(\mathrm{C}_{47} \mathrm{H}_{67} \mathrm{~N}_{5} \mathrm{O}_{10}{ }^{\circ}\right.$ $\left.0.2 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

N-(O-t-Butyl-(S)- α-glutamyl)-2(S)-\{ 2-[N-(N,N'-di-t-but-oxycarbonylamidino)-4-piperidyloxy]ethyl\} piperidine (57). Treatment of F moc-amine $56(1.325 \mathrm{~g}, 1.54 \mathrm{mmol})$ with piperidine by the procedure described for 51a gave 57 (0.90 g , 91\%) as a white foam. $\mathrm{R}_{\mathrm{f}} 0.34\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}, 90: 10\right) ;[\alpha]_{\mathrm{D}}$ $+11.4^{\circ}(\mathrm{c}=0.71, \mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.30-2.10(\mathrm{~m}$, $16 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}), 1.50(\mathrm{~s}, 18 \mathrm{H}), 2.25-2.68(\mathrm{~m}, 2.5 \mathrm{H}), 3.10$ (t, 0.5 H$), 3.25-3.55(\mathrm{~m}, 5 \mathrm{H}), 3.65-3.88(\mathrm{~m}, 3.5 \mathrm{H}), 4.21$ (br $\mathrm{s}, 0.5 \mathrm{H}), 4.52(\mathrm{~d}, 0.5 \mathrm{H}), 4.86(\mathrm{br} \mathrm{s}, 0.5 \mathrm{H}), 10.0(\mathrm{vbr} \mathrm{s}, 1 \mathrm{H})$. LRMS: m/z $640(\mathrm{M}+\mathrm{H})^{+}$. Anal. $\left(\mathrm{C}_{32} \mathrm{H}_{57} \mathrm{~N}_{5} \mathrm{O}_{8} \cdot 0.1 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \mathrm{C}$, H, N.

N-(N-Cyclohexyl-O-t-butyl-(S)- α-glutamyl)-2(S)-\{2-[N-(N,N'-di-t-butoxycarbonyl-amidino)-4-piperidyloxy]ethyl\} piperidine (58). Alkylation of amine 57 ($853 \mathrm{mg}, 1.33$ mmol) with cyclohexanone ($0.414 \mathrm{~mL}, 3.99 \mathrm{mmol}$) in the presence of $\mathrm{NaBH}(\mathrm{OAC})_{3}(861 \mathrm{mg}, 3.99 \mathrm{mmol})$ and $\mathrm{AcOH}(0.233$ $\mathrm{mL}, 3.99 \mathrm{mmol}$) by the general procedure gave amine 58 (847 $\mathrm{mg}, 88 \%)$ as a white foam. $\mathrm{R}_{\mathrm{f}} 0.32$ (hexanes:EtOAc, $1: 1$); $[\alpha]_{\mathrm{D}}$ $-6.3^{\circ}(\mathrm{c}=0.79, \mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.94-2.02(\mathrm{~m}$, $23 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}), 1.46(\mathrm{~s}, 18 \mathrm{H}), 2.08-2.73(\mathrm{~m}, 4 \mathrm{H}), 3.10(\mathrm{t}$, $0.5 \mathrm{H}), 3.28-3.63(\mathrm{~m}, 7 \mathrm{H}), 3.66-3.88(\mathrm{~m}, 3 \mathrm{H}), 4.22$ (br s, 0.5 H), 4.53 (d, 0.5 H), 4.87 (br s, 0.5 H$), 10.0$ (vbr s, 1 H). LRMS: $\mathrm{m} / \mathrm{z} 723(\mathrm{M}+\mathrm{H})^{+}$. Anal. $\left(\mathrm{C}_{38} \mathrm{H}_{67} \mathrm{~N}_{5} \mathrm{O}_{8}\right) \mathrm{H}, \mathrm{N}$; C: calcd, 63.22; found, 62.75.

N-(N-Cyclohexyl-N-methyl-O-t-butyl-(S)- α-glutamyl)-2(S)-\{2-[N-(N,N'-di-t-butoxy-carbonylamidino)-4-piperidyloxy]ethyl\}piperidine (59). Methylation of amine 58 (598 $\mathrm{mg}, 0.828 \mathrm{mmol}$) with 37% aqueous formal dehyde (0.12 mL , 1.46 mmol) in the presence of $\mathrm{NaBH}(\mathrm{OAc})_{3}(0.350 \mathrm{mg}, 1.66$ mmol) by the general procedure gave amine 59 ($0.572 \mathrm{mg}, 94 \%$) as a white foam. $R_{f} 0.42$ (hexanes:EtOAc, 1:1); $[\alpha]_{D}+0.5^{\circ}$ ($\mathrm{c}=$ $0.65, \mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.95-2.15(\mathrm{~m}, 22 \mathrm{H}), 1.42$ $(\mathrm{s}, 9 \mathrm{H}), 1.46(\mathrm{~s}, 18 \mathrm{H}), 2.20-2.53(\mathrm{~m}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.62-$ (t, 0.2 H$), 3.00(\mathrm{t}, 0.8 \mathrm{H}), 3.30-3.82(\mathrm{~m}, 10 \mathrm{H}), 3.99(\mathrm{~d}, 0.8 \mathrm{H})$, 4.23 (br s, 0.2 H), 4.51 (d, 0.2 H), 4.86 (br s, 0.8 H$), 10.0(\mathrm{br} \mathrm{s}$, 1 H). LRMS: m/z $735(\mathrm{M}+\mathrm{H})^{+}$. Anal. $\left(\mathrm{C}_{39} \mathrm{H}_{69} \mathrm{~N}_{5} \mathrm{O}_{8}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

N-[N-(Benzyloxycarbonyl)-(R)-phenylalanyl]-2(RS)-[2-(4-cyanophenoxy)ethyl]piperidine (60). WSCDI (1.53 g, 8 mmol) was added to an ice cold stirred solution of amine 25 ($921 \mathrm{mg}, 4 \mathrm{mmol}$), Cbz-D-Phe-OH ($1.32 \mathrm{~g}, 4 \mathrm{mmol}$), HOBt (540 $\mathrm{mg}, 4 \mathrm{mmol})$, and NMM ($809 \mathrm{mg}, 8 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. The mixture was allowed to warm to $23^{\circ} \mathrm{C}$, and after 18 h , the solvent was evaporated. The residue was partitioned between EtOAc and $\mathrm{H}_{2} \mathrm{O}$, and the organic phase was washed with $\mathrm{HCl}(2 \mathrm{M})$, brine, saturated aqueous NaHCO_{3}, and brine, and then dried over MgSO_{4}. Evaoporation gave a foam, which was purified by chromatography on silica, using $\mathrm{Et}_{2} \mathrm{O}$-hexane (2:1) as eluant, to give amide $\mathbf{6 0}$ ($910 \mathrm{mg}, 44 \%$) as a white solid. $\mathrm{R}_{\mathrm{f}} 0.38$ and 0.46 (diastereoisomers) ($\mathrm{Et}_{2} \mathrm{O}:$ hexane, $4: 1$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.6(\mathrm{~m}, 0.6 \mathrm{H}), 1.10-1.75(\mathrm{~mm}, 6 \mathrm{H}), 1.75-$ $2.35(\mathrm{~mm}, 2 \mathrm{H}), 2.60(\mathrm{~m}, 0.4 \mathrm{H}), 2.97(\mathrm{~m}, 2.6 \mathrm{H}), 3.56(\mathrm{~m}, 0.6$ H), $3.90(\mathrm{~m}, 2.4 \mathrm{H}), 4.50(\mathrm{~m}, 0.4 \mathrm{H}), 4.77-5.14(\mathrm{~m}, 4 \mathrm{H}), 5.50$ ($4 x d, 1$ H), 6.89 (m, 2 H), 7.20 (m, 10 H), 7.48 (m, 2 H). Anal. $\left(\mathrm{C}_{31} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{4} \cdot 0.2 \mathrm{Et}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

N-[N-Carboxymethyl-(R)-cyclohexylalanyl]-2(S)-[2-(4amidinophenoxy)ethyl]piperidine Dihydrochloride (2). $\mathrm{NaOH}(8 \mathrm{~mL}, 1 \mathrm{M})$ was added to a suspension of the ester 32 $(740 \mathrm{mg}, 1.3 \mathrm{mmol})$ in dioxan (8 mL). After 35 min , the resulting solution was acidified to pH 2 with $\mathrm{HCl}(1 \mathrm{M})$ and evaporated to dryness, and the residue was dried azeotropically with i-PrOH. The residue was then extracted with hot i-PrOH, the suspension was filtered, and the filtrate was evaporated to dryness. The residue on trituration with $\mathrm{Et}_{2} \mathrm{O}$ gave $2(630 \mathrm{mg}, 86 \%)$ as a white powder. $\mathrm{R}_{\mathrm{f}} 0.15\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$: $\left.\mathrm{MeOH}: 0.88 \mathrm{NH}_{3}, 80: 20: 5\right)$. ${ }^{1} \mathrm{H}$ NMR (DMSO-d 6) (75:25 rotamer ratio): $\delta 0.65-1.84(\mathrm{~mm}, \sim 20 \mathrm{H}), 1.94(\mathrm{~m}, 0.75 \mathrm{H}), 2.21(\mathrm{~m}$, $0.75 \mathrm{H}), 2.79(\mathrm{t}, 0.25 \mathrm{H}), 3.12-3.89(\mathrm{~mm}, \sim 6 \mathrm{H}), 4.07(\mathrm{~m}, 2$ $\mathrm{H}), 4.33(\mathrm{~m}, 0.25 \mathrm{H}), 4.45(\mathrm{~m}, 0.75 \mathrm{H}), 4.55(\mathrm{~m}, 0.25 \mathrm{H}), 4.79$ (m, 0.75 H), 7.08 (dd, 2 H), 7.85 (dd, 2 H), 9.06 (s, 2 H), 9.26 $(\mathrm{s}, 2 \mathrm{H})$. LRMS: $\mathrm{m} / \mathrm{z} 459(\mathrm{M}+\mathrm{H})^{+}, 442\left(\mathrm{M}+\mathrm{H}-\mathrm{NH}_{3}\right)^{+}$. Anal. $\left(\mathrm{C}_{25} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O}_{4} \cdot 2 \mathrm{HCl} \cdot 0.3 \mathrm{H}_{2} \mathrm{O} \cdot 0.41 \mathrm{i}-\mathrm{PrOH}\right.$) C, H, N.

N-[N-Carboxymethyl-(R)-cyclohexylalanyl]-2(R)-[2-(4amidinophenoxy)ethyl]piperidine Dihydrochloride (3). This compound was prepared from 33 in a manner similar to
2. Amidine 3 (96%) was obtained as a white powder. $R_{f} 0.1$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: 0.88 \mathrm{NH}_{3}, 80: 20: 5\right)$. ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) ($6: 4$ distribution of rotamers): $\delta 0.8(\mathrm{~m}, 2 \mathrm{H}), 0.94-1.83(\mathrm{~mm}, \sim 19$ H), 1.99 ($\mathrm{m}, 0.8 \mathrm{H}$), $2.15(\mathrm{~m}, 1.2 \mathrm{H}), 2.74(\mathrm{t}, 0.4 \mathrm{H}), 3.12-3.84$ $(\mathrm{mm}, \sim 3.6 \mathrm{H}), 3.96(\mathrm{~m}, 1.4 \mathrm{H}), 4.13(\mathrm{~m}, 1 \mathrm{H}), 4.30(\mathrm{~m}, 1 \mathrm{H})$, $4.50(\mathrm{~m}, 0.6 \mathrm{H}), 4.90(\mathrm{~m}, 0.6 \mathrm{H}), 7.04$ (d, 1.2 H), 7.16 (m, 0.8 H), 7.86 (t, 2 H), 9.10 (s, 2 H), 9.25 (s, 2 H). LRMS: m/z 459 $(\mathrm{M}+\mathrm{H})^{+}, 442\left(\mathrm{M}+\mathrm{H}-\mathrm{NH}_{3}\right)^{+}$. Anal. $\left(\mathrm{C}_{25} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O}_{4} \cdot 2 \mathrm{HCl} \cdot\right.$ $0.4 i-\mathrm{PrOH}) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

General Procedure of the Preparation of Targets 4, 5, 7-22. A stirred, ice-cooled solution of the tert-butyl ester (0.5 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was saturated with HCl gas, the cool ing bath was removed, and the resulting sol ution was stirred at $23^{\circ} \mathrm{C}$ until total deprotection was complete (typically $2-6 \mathrm{~h}$ at $23^{\circ} \mathrm{C}$). The solvent was removed by evaporation under reduced pressure, and the residual HCl was removed azeotropically using $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\times 3)$ to give the amine di(tri)hydrochloride.

N-[N-Carboxymethyl-(R)-cyclohexylalanyl]-2(RS)-[2(N -amidino-4-piperidyloxy)ethyl]piperidine Dihydrochloride (4). HCl gas deprotection of tert-butyl ester 46 (286 $\mathrm{mg}, 0.40 \mathrm{mmol}$) by the general procedure gave 4 ($209 \mathrm{mg}, 90 \%$) as a white solid. $\mathrm{R}_{\mathrm{f}} 0.15,0.12$ (consistent with two diastereoisomers) ($\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: 0.88 \mathrm{NH}_{3}, 80: 20: 5$). ${ }^{1} \mathrm{H}$ NMR (DMSOd_{6}): $\delta 0.78-2.00(\mathrm{~m}, 25 \mathrm{H}), 2.95-4.06(\mathrm{~m}$, integral obscured by HOD), 4.12-4.85 (m, 3 H), 7,52 (s, 4 H), 8.80-9.58 (br s, 2 H). LRMS: $\mathrm{m} / \mathrm{z} 466.5(\mathrm{M}+\mathrm{H})^{+}$. Anal. $\left(\mathrm{C}_{24} \mathrm{H}_{43} \mathrm{~N}_{5} \mathrm{O}_{4} \cdot 2 \mathrm{HCl} \cdot\right.$ $0.45 \mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$) C, H, N.

N-[N-Carboxymethyl-(R)-phenylalanyl]-2(RS)-[2-(N-amidino-4-piperidyloxy)ethyl]piperidine Dihydrochloride (5). An ice cold solution of ester 49 ($470 \mathrm{mg}, 0.66 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (15 mL) was saturated with HCl gas over 0.5 h . The solution was then left at $23^{\circ} \mathrm{C}$ for 2 h , and the solvent was evaporated initially with a stream of N_{2} and then under vacuum. The residue was azeotroped with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give 5 ($336 \mathrm{mg}, 89 \%$) as a white powder. $\mathrm{R}_{\mathrm{f}} 0.48$ ($\mathrm{MeOH}: \mathrm{EtOAc}: A c O H$: $\left.0.88 \mathrm{NH}_{3}: \mathrm{H}_{2} \mathrm{O}, 60: 12: 4: 4: 8\right)$. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 0.18$ (m, $0.25 \mathrm{H}), 0.14(\mathrm{~m}, 0.15 \mathrm{H}), 0.92-1.90(\mathrm{~mm}, \sim 12 \mathrm{H}), 2.21(\mathrm{~m}$, $0.25 \mathrm{H}), 2.92(\mathrm{~m}, 1 \mathrm{H}), 3.10-3.68(\mathrm{~m}, \sim 10 \mathrm{H}), 2.81(\mathrm{~m}, 2 \mathrm{H})$, 4.27 (m, 0.25 H$), 4.64(\mathrm{~mm}, 1.5 \mathrm{H}), 7.27(\mathrm{~m}, 5 \mathrm{H}), 7.54(\mathrm{~m}, 4$ H). LRMS: m/z $460(\mathrm{M}+\mathrm{H})^{+}$. Anal. $\left(\mathrm{C}_{24} \mathrm{H}_{3} \mathrm{~N}_{5} \mathrm{O}_{4} \cdot 2 \mathrm{HCl} \cdot\right.$ $\left.1.6 \mathrm{H}_{2} \mathrm{O} \cdot 0.25 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

N-[(R)-Phenylalanyl]-2(RS)-[2-(4-amidinophenoxy)ethyl]piperidine Dihydrochloride (6). This compound was prepared from 60 in a manner similar to 32. The crude reaction product was chromotographed on silica. Elution with mixtures of $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}-0.88 \mathrm{NH}_{3}$ (92.5:7.5:1 to 85:15:2) gave the Cbz derivative of compound 6 (30\%). $\mathrm{R}_{\mathrm{f}} 0.47\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}\right.$: $\left.0.88 \mathrm{NH}_{3}, 80: 20: 5\right)$. LRMS: m/z $520(\mathrm{M}+\mathrm{H})^{+}$, followed by 6 (21\%). $\mathrm{R}_{\mathrm{f}} 0.3\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: 0.88 \mathrm{NH}_{3}, 80: 20: 5\right)$. LRMS: m / z $395(\mathrm{M}+\mathrm{H})^{+}$. Compound 6 was treated with etherial HCl to give the hydrochloride as a white powder. ${ }^{1} \mathrm{H}$ NMR (DMSO$\left.\mathrm{d}_{6}\right): \delta 0.11(\mathrm{~m}, 0.5 \mathrm{H}), 1.00-1.71(\mathrm{~mm}, 5 \mathrm{H}), 1.83(\mathrm{~m}, 1 \mathrm{H})$, $2.12(\mathrm{~m}, 1 \mathrm{H}), 2.62(\mathrm{~m}, 0.5 \mathrm{H}), 3.00(\mathrm{~mm}, 2.5 \mathrm{H}), 3.45(\mathrm{~m}, 1 \mathrm{H})$, $3.90(\mathrm{~m}, 0.5 \mathrm{H}), 4.04(\mathrm{~m}, 2 \mathrm{H}), 4.57(\mathrm{~m}, 1 \mathrm{H}), 4.72(\mathrm{~m}, 1 \mathrm{H})$, 7.08 (m, 2 H), 7.23 (m, 5 H), 7.81 (m, 2 H), 8.42 (br s, $3 H$), $9.04(\mathrm{~d}, 2 \mathrm{H}), 9.25(\mathrm{~d}, 2 \mathrm{H})$. Anal. $\left(\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{2} \cdot 2 \mathrm{HCl} \cdot 1.4 \mathrm{H}_{2} \mathrm{O} \cdot\right.$ $\left.0.2 \mathrm{Et}_{2} \mathrm{O} \cdot 0.2 \mathrm{EtOAc}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

N-(N-Cyclohexyl-(S)- α-aspartyl)-2(RS)-[2-(N-amidino-4-piperidyloxy)ethyl]piperidine dihydrochloride (7). HCl gas deprotection of tert-butyl ester 52a ($280 \mathrm{mg}, 0.39 \mathrm{mmol}$) by the general procedure gave $7(170 \mathrm{mg})$ as a white foam. R_{f} 0.57 (MeOH:EtOAc:AcOH:0.88NH 3 : $\mathrm{H}_{2} \mathrm{O}, 60: 12: 4: 4: 8$). ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$): $\delta 0.95-2.10(\mathrm{~mm}, 20 \mathrm{H}), 2.62-3.82(\mathrm{~mm}, 13 \mathrm{H})$, 3.92-4.36 (mm, 1 H), 4.57-4.83 (m, 2 H), 7.50 (s, 4 H), 8.75 ($\mathrm{vbr} \mathrm{s}, 1 \mathrm{H}$), 9.35 ($\mathrm{vbr} \mathrm{s}, 1 \mathrm{H}$), 12.9 ($\mathrm{vbr} \mathrm{s}, 1 \mathrm{H}$). LRMS: m/z $452(\mathrm{M}+\mathrm{H})^{+}$. Anal. $\left(\mathrm{C}_{23} \mathrm{H}_{41} \mathrm{~N}_{5} \mathrm{O}_{4} \cdot 2 \mathrm{HCl} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
\mathbf{N}-(N-Cyclopentyl-(S)- α-aspartyl)-2(RS)-[2-(N-amidino-4-piperidyloxy)ethyl]piperidine Dihydrochloride (8). HCl gas deprotection of tert-butyl ester 52b ($143 \mathrm{mg}, 0.21 \mathrm{mmol}$) by the general procedure gave $8(95 \mathrm{mg})$ as a white foam. R_{f} 0.44 (MeOH:EtOAc:AcOH: $0.88 \mathrm{NH}_{3}: \mathrm{H}_{2} \mathrm{O}, \quad 60: 12: 4: 4: 8$). ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$): $\delta 1.20-2.04(\mathrm{~mm}, 16 \mathrm{H}), 2.64-3.80(\mathrm{~mm}$, 15 H), 3.94-4.86 (mm, 3 H), $7.43(\mathrm{~s}, 4 \mathrm{H}), 8.92$ (vbr s, 1 H),
9.34 (vbr s, 1 H), 12.8 (vbr s, 1 H). LRMS: m/z $438(\mathrm{M}+\mathrm{H})^{+}$. Anal. ($\mathrm{C}_{22} \mathrm{H}_{39} \mathrm{~N}_{5} \mathrm{O}_{4} \cdot 2 \mathrm{HCl} \cdot 1.5 \mathrm{H}_{2} \mathrm{O} \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$) C, H, N.

N-(N-Cycloheptyl-(S)- α-aspartyl)-2(S)-[2-(N-amidino-4piperidyloxy)ethyl]piperidine Dihydrochloride (9). HCl gas deprotection of tert-butyl ester 52c ($320 \mathrm{mg}, 0.44 \mathrm{mmol}$) by the general procedure gave $9(200 \mathrm{mg})$ as a white powder. $\mathrm{R}_{\mathrm{f}} 0.50$ ($\mathrm{MeOH}: \mathrm{EtOAc}: A c O H: 0.88 \mathrm{NH}_{3}: \mathrm{H}_{2} \mathrm{O}, 60: 12: 4: 4: 8$); $[\alpha]_{578}$ $+6.3^{\circ}(\mathrm{c}=0.8, \mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.\mathrm{d}_{6}\right): \delta 1.19-2.15(\mathrm{~mm}$, $22 \mathrm{H}), 2.64-3.05(\mathrm{~mm}, 3 \mathrm{H}), 3.05-3.8(\mathrm{~mm}, 10 \mathrm{H}), 3.92-4.07$ (mm, 3 H), 7.50 (s, 4 H), 8.6 (vbr s, 1 H), 9.2 (vbr s, 1 H), 13.0 (vbr s, 1 H). LRMS: m/z $466.5(\mathrm{M}+\mathrm{H})^{+}$. Anal. $\left(\mathrm{C}_{24} \mathrm{H}_{43} \mathrm{~N}_{5} \mathrm{O}_{4}\right.$. $\left.2 \mathrm{HCl} \cdot 1.1 \mathrm{H}_{2} \mathrm{O} \cdot 0.6 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

N-(N-Cyclooctyl-(S)- α-aspartyl)-2(RS)-[2-(N-amidino-4-piperidyloxy)ethyl]piperidine Dihydrochloride (10). HCl gas deprotection of tert-butyl ester 52d ($160 \mathrm{mg}, 0.22$ $\mathrm{mmol})$ by the general procedure gave $\mathbf{1 0}(89 \mathrm{mg})$ as a white powder. $\mathrm{R}_{\mathrm{f}} 0.58$ (MeOH:EtOAc:AcOH :0.88NH $3: \mathrm{H}_{2} \mathrm{O}, 60: 12: 4$: 4:8). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 1.1-2.06$ ($\mathrm{mm}, 24 \mathrm{H}$), 2.61-3.8 (mm, 13 H), 3.92-4.93 (mm, 3 H), 7.48 (s, 4 H), 8.48-9.25 (br, 2 H), 13.0 (vbr s, 1 H). LRMS: m/z $480(\mathrm{M}+\mathrm{H})^{+}$. Anal. $\left(\mathrm{C}_{25} \mathrm{H}_{45} \mathrm{~N}_{5} \mathrm{O}_{4} \cdot 2 \mathrm{HCl} \cdot 2.0 \mathrm{H}_{2} \mathrm{O} \cdot 0.25 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

N-(N-3-Pentyl-(S)- α-aspartyl)-2(S)-[2-(N-amidino-4-piperidyloxy)ethyl]piperidine Dihydrochloride (11). HCl gas deprotection of tert-butyl ester 52e by the general procedure gave 11 as a white foam. ${ }^{1} \mathrm{H}$ NMR (DMSO_{6}): $\delta 0.82-$ 0.99 (m, 6 H), 1.20-2.08 (mm, 16 H$), 2.6-4.34(\mathrm{~mm}, 12 \mathrm{H})$, 4.59-4.80 (m, 2 H), 7.50 (s, 4 H), 8.38 (vbr s, 1 H), 9.10 (vbr s, $1 \mathrm{H}), \mathrm{CO}_{2} \mathrm{H}$ not detected. LRMS: $\mathrm{m} / \mathrm{z} 460.6(\mathrm{M}+\mathrm{H})^{+}$. Anal. $\left(\mathrm{C}_{22} \mathrm{H}_{41} \mathrm{~N}_{5} \mathrm{O}_{4} \cdot 2 \mathrm{HCl} \cdot 3.0 \mathrm{H}_{2} \mathrm{O} \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

N-(N-Cyclohexyl-N-methyl-(S)- α-aspartyl)-2(S)-[2-(N-amidino-4-piperidyloxy)ethyl]piperidine Dihydrochloride (12). HCl gas deprotection of tert-butyl ester 53 f (690 $\mathrm{mg}, 0.95 \mathrm{mmol})$ by the general procedure gave $12(523 \mathrm{mg})$ as a white powder. $\mathrm{R}_{\mathrm{f}} 0.50$ (MeOH:EtOAc:AcOH:0.88N $\mathrm{N}_{3}: \mathrm{H}_{2} \mathrm{O}$, 60:12:4:4:8). ${ }^{1 \mathrm{H}}$ NMR (DMSO-d d_{6} : $\delta 1.00-2.30(\mathrm{~mm}, 22 \mathrm{H}$), 2.55-4.40 (mm, ~15 H), $4.80(\mathrm{~m}, 2 \mathrm{H}), 7.52(\mathrm{~d}, 4 \mathrm{H}), 9.50-$ 10.40 (br m, 1 H), 13.00 (vbr s, 1 H). LRMS: m/z 466 (M + $\mathrm{H})^{+}$. Anal. $\left(\mathrm{C}_{24} \mathrm{H}_{43} \mathrm{~N}_{5} \mathrm{O}_{4} \cdot 2 \mathrm{HCl} \cdot 1.3 \mathrm{H}_{2} \mathrm{O} \cdot 0.8 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

N-(N-Cycloheptyl-N-methyl-(S)- α-aspartyl)-2(S)-[2-(N-amidino-4-piperidyloxy)ethyl]piperidine Dihydrochloride (13). HCl gas deprotection of tert-butyl ester 53c (310 $\mathrm{mg}, 0.42 \mathrm{mmol})$ by the general procedure gave $\mathbf{1 3}(117 \mathrm{mg})$ as a white solid. $\mathrm{R}_{\mathrm{f}} 0.52\left(\mathrm{MeOH}: \mathrm{EtOAc}: A c O H: 0.88 \mathrm{NH}_{3}: \mathrm{H}_{2} \mathrm{O}, 60\right.$: 12:4:4:8). ${ }^{1 \mathrm{H}}$ NMR (DMSO- d_{6}): $\delta 1.20-2.05(\mathrm{~mm}, 22 \mathrm{H}), 2.68$ (s, 3H), 2.74-4.4 (mm, 12 H$), 4.64-4.94(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{~s}, 4$ H), 9.43 (vbr s, 1 H), 13.02 (vbr s, 1 H). LRMS: m/z 480.2 (M $+\mathrm{H})^{+}$. Anal. $\left(\mathrm{C}_{25} \mathrm{H}_{45} \mathrm{~N}_{5} \mathrm{O}_{4} \cdot 2 \mathrm{HCl} \cdot 2.0 \mathrm{H}_{2} \mathrm{O} \cdot 0.25 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

N-(N-Cyclohept-4-enyl-N-methyl-(S)- α-aspartyl)-2(S)-[2-(N-amidino-4-piperidyloxy)ethyl]piperidine Dihydrochloride (14). HCl gas deprotection of tert-butyl ester $\mathbf{5 3 g}$ ($281 \mathrm{mg}, 0.38 \mathrm{mmol}$) by the general procedure gave 14 (231 mg) as a white solid. $\mathrm{R}_{\mathrm{f}} 0.54$ ($\mathrm{MeOH}: E t O A c: A c O H: 0.88 \mathrm{NH}_{3}$: $\left.\mathrm{H}_{2} \mathrm{O}, 60: 12: 4: 4: 8\right)$; $[\alpha]_{\mathrm{D}}-19.1^{\circ}\left(\mathrm{c}=0.79, \mathrm{H}_{2} \mathrm{O}\right) .{ }^{1} \mathrm{H}$ NMR (DMSO-d d_{6} : $\delta 1.2-2.4(\mathrm{~mm}, 16 \mathrm{H}), 2.68(\mathrm{~s}, 3 \mathrm{H}), 2.7-4.35(\mathrm{~mm}$, 16 H), 4.74-4.94 (m, 2 H), 5.75 (s, 2 H), 7.6 (s, 4 H), 9.5-10.1 (vbr s, 1H), $13.0(\mathrm{vbr} \mathrm{s}, 1 \mathrm{H})$. LRMS: m/z $478(\mathrm{M}+\mathrm{H})^{+}$. Anal. $\left(\mathrm{C}_{25} \mathrm{H}_{43} \mathrm{~N}_{5} \mathrm{O}_{4} \cdot 2 \mathrm{HCl} \cdot 0.5 \mathrm{H}_{2} \mathrm{O} \cdot 1.0 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

N-(N-Cyclohexylmethyl-(S)- α-aspartyl)-2(RS)-[2-(N-ami-dino-4-piperidyloxy)ethyl]piperidine Dihydrochloride (15). HCl gas deprotection of tert-butyl ester 52 h (132 mg , $0.183 \mathrm{mmol})$ by the general procedure gave $15(100 \mathrm{mg})$ as a white foam. $\mathrm{R}_{\mathrm{f}} 0.56$ ($\mathrm{MeOH}: E t O A c: A c O H: 0.88 \mathrm{NH}_{3}: \mathrm{H}_{2} \mathrm{O}, 60: 12$: 4:4:8). ${ }^{1 \mathrm{H}}$ NMR (DMSO-d ${ }_{6}$): $\delta 0.8-2.0(\mathrm{~mm}, 23 \mathrm{H}), 2.6-3.8$ (mm, 13 H), 3.96-4.48 (mm, 2 H), 7.52 ($\mathrm{s}, 4 \mathrm{H}$), 8.68 ($\mathrm{vbr} \mathrm{s}, 1$ H), 9.48 (vbr s, 1 H), 13.0 (vbr s, 1 H). LRMS: m/z 466 (M + $\mathrm{H})^{+}, 424,335,255$. Anal. $\left(\mathrm{C}_{24} \mathrm{H}_{43} \mathrm{~N}_{5} \mathrm{O}_{4} \cdot 2 \mathrm{HCl} \cdot 1.5 \mathrm{H}_{2} \mathrm{O} \cdot 0.4 \mathrm{CH}_{2^{-}}\right.$ Cl_{2}) C, H, N.

N-(N-Benzyl-(S)- α-aspartyl)-2(S)-[2-(N-amidino-4-piperidyloxy)ethyl]piperidine Dihydrochloride (16). HCl gas deprotection of tert-butyl ester 52i ($173 \mathrm{mg}, 0.24 \mathrm{mmol}$) by the general procedure gave $\mathbf{1 6}(107 \mathrm{mg})$ as a white solid. $\mathrm{R}_{\mathrm{f}} 0.55$ ($\mathrm{MeOH}: E t O A c: A c O H: ~ 0.88 \mathrm{NH}_{3}: \mathrm{H}_{2} \mathrm{O}, 60: 12: 4: 4: 8$); $[\alpha]_{D}-5.3^{\circ}$ ($\mathrm{c}=0.15, \mathrm{MeOH}$). ${ }^{1 \mathrm{H}}$ NMR (DMSO-d ${ }^{2}$): $\delta 1.14-1.94(\mathrm{~mm}, 12$ H), 2.62-3.70 (mm, 10 H), 3.88-4.37 (mm, 3 H), 4.55-4.80
(m, 2 H), 7.4 ($\mathrm{s}, 4 \mathrm{H}$), 7.5 (s, 5 H), 9.3 (br s, 1 H), 9.98 (br s, 1 H), 12.9 (br s, 1 H). LRMS: m/z $460(\mathrm{M}+\mathrm{H})^{+}, 418,255,213$, 108. Anal. $\left(\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{~N}_{5} \mathrm{O}_{4} \cdot 2 \mathrm{HCl} \cdot 0.5 \mathrm{H}_{2} \mathrm{O} \cdot 0.66 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

N-(N-Cyclohexyl-N-ethyl-(S)- α-aspartyl)-2(RS)-[2-(N-amidino-4-piperidyloxy)ethyl]piperidine Dihydrochloride (17). HCl gas deprotection of tert-butyl ester 54 (186 mg , 0.253 mmol) by the general procedure gave $17(156 \mathrm{mg})$ as a white foam. $\mathrm{R}_{\mathrm{f}} 0.54$ (MeOH:EtOAc:AcOH : $0.88 \mathrm{NH}_{3}: \mathrm{H}_{2} \mathrm{O}, 60: 12$: 4:4:8). ${ }^{1}$ H NMR (DMSO-d 6): $\delta 0.85-2.20(m, 25 H), 2.58-4.40$ (m , integral obscured by solvent), 4.62-4.93 (m, 2 H), 7.357.63 (m, 4 H), 9.30-9.90 (br m, 1 H). LRMS: m/z 480.7 (M + $\mathrm{H})^{+}$. Anal. $\left(\mathrm{C}_{25} \mathrm{H}_{45} \mathrm{~N}_{5} \mathrm{O}_{4} \cdot 2 \mathrm{HCl} \cdot 0.1 \mathrm{H}_{2} \mathrm{O} \cdot 1.0 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
$\mathbf{N}-\{\mathbf{N}-C y c l o h e x y l-N-[2-(d i m e t h y l a m i n o) e t h y l]-(S)-\alpha-a s-$ partyl\}-2(RS)-[2-(N-amidino-4-piperidyloxy)ethyl]piperidine Trihydrochloride (18). HCl gas deprotection of tertbutyl ester 55 ($390 \mathrm{mg}, 0.501 \mathrm{mmol}$) by the general procedure gave 18 (0.31 mg) as a sticky white foam. $\mathrm{R}_{\mathrm{f}} 0.15$ (MeOH: EtOAc:AcOH:0.88NH $3_{3}: \mathrm{H}_{2} \mathrm{O}, 60: 12: 4: 4: 8$). ${ }^{1} \mathrm{H}$ NMR (DMSO$\left.\mathrm{d}_{6}\right): \delta 0.98-2.20(\mathrm{~m}, 24 \mathrm{H}), 2.60-4.82(\mathrm{~m}$, integral obscured by HOD), $7.85-8.20(m, 4 \mathrm{H})$. Anal. $\left(\mathrm{C}_{27} \mathrm{H}_{50} \mathrm{~N}_{6} \mathrm{O}_{4} \cdot 3 \mathrm{HCl} \cdot\right.$ $1.0 \mathrm{H}_{2} \mathrm{O} \cdot 0.7 \mathrm{CH}_{2} \mathrm{Cl}_{2}$) C, H, N.

N-[N-(4-Tetrahydropyranyl)-(S)- α-aspartyl]-2(R,S)-[2(N -amidino-4-piperidyloxy)ethyl]piperidine Dihydrochloride (19). HCl gas deprotection of tert-butyl ester 52j (180 $\mathrm{mg}, 0.253 \mathrm{mmol})$ by the general procedure gave $19(125 \mathrm{mg})$ as a white foam. Rf 0.48 (MeOH:EtOAc:AcOH: $0.88 \mathrm{NH}_{3}: \mathrm{H}_{2} \mathrm{O}$, 60:12:4:4:8). ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$): δ 1.19-2.05 (mm, 16 H), 2.68-4.37 (mm, 16 H$), 4.58-4.82(\mathrm{~m}, 2 \mathrm{H}), 7.37(\mathrm{~s}, 4 \mathrm{H}), 8.92$ (vbr s, 1 H), 9.25 (vbr s, 1 H), $\mathrm{CO}_{2} \mathrm{H}$ not detected. LRMS: m/z $454(\mathrm{M}+\mathrm{H})^{+}$. Anal. $\left(\mathrm{C}_{22} \mathrm{H}_{39} \mathrm{~N}_{5} \mathrm{O}_{5} \cdot 2 \mathrm{HCl} \cdot 0.5 \mathrm{H}_{2} \mathrm{O} \cdot 1.0 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \mathrm{C}$, H, N.

N-[N-Methyl-N-(3-tetrahydropyranyl)-(S)- α-aspartyl]-2(S)-[2-(N-amidino-4-piperidyl-oxy)ethyl]piperidine Dihydrochloride (20). HCl gas deprotection of tert-butyl ester 53k ($165 \mathrm{mg}, 0.228 \mathrm{mmol}$) by the general procedure gave 20 (124 mg) as an off-white solid. $\mathrm{R}_{\mathrm{f}} 0.52$ (MeOH:EtOAc:AcOH: $0.88 \mathrm{NH}_{3}: \mathrm{H}_{2} \mathrm{O}, 60: 12: 4: 4: 8$). ${ }^{1} \mathrm{H}$ NMR (DMSO-d 6): $\delta 1.08-2.18$ ($\mathrm{m}, 21 \mathrm{H}$), 2.68 ($\mathrm{br} \mathrm{s}, 3 \mathrm{H}$), 3.70-4.94 (m, integral obscured by HOD), $7.38-7.59(\mathrm{~m}, 5 \mathrm{H})$. Anal. $\left(\mathrm{C}_{23} \mathrm{H}_{41} \mathrm{~N}_{5} \mathrm{O}_{5} \cdot 2 \mathrm{HCl} \cdot 3.1 \mathrm{H}_{2} \mathrm{O} \cdot\right.$ $\left.0.6 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

N-[N-(N-Methyl-4-piperidyl)-(S)- α-aspartyl]-2(RS)-[2(N -amidino-4-piperidyloxy)ethyl]piperidine Trihydrochloride (21). HCl gas deprotection of tert-butyl ester 521 (230 $\mathrm{mg}, 0.32 \mathrm{mmol})$ by the general procedure gave $21(130 \mathrm{mg})$ as a white foam. $\mathrm{R}_{\mathrm{f}} 0.13$ (MeOH:EtOAc:AcOH : $0.88 \mathrm{NH}_{3}: \mathrm{H}_{2} \mathrm{O}, 60$: 12:4:4:8). ${ }^{1}$ H NMR (DMSO-d ${ }_{6}$): $\delta 1.20-2.32$ (m, 17 H), 2.63 (s, 3 H), 2.64-4.35 (m, integral obscured by HOD), 4.58-4.83 (m, $1 \mathrm{H})$. LRMS: $\mathrm{m} / \mathrm{z} 467.5(\mathrm{M}+\mathrm{H})^{+}$. Anal. $\left(\mathrm{C}_{23} \mathrm{H}_{42} \mathrm{~N}_{6} \mathrm{O}_{4} \cdot 3 \mathrm{HCl} \cdot\right.$ $1.4 \mathrm{H}_{2} \mathrm{O} \cdot 0.6 \mathrm{CH}_{2} \mathrm{Cl}_{2}$) C, H, N.

N-(N-Cyclohexyl-N-methyl-(S)- α-glutamyl)-2(S)-[2-(N-amidino-4-piperidyloxy)ethyl]piperidine Dihydrochloride (22). HCl gas deprotection of tert-butyl ester 59 (538 mg , $0.730 \mathrm{mmol})$ by the general procedure gave $22(412 \mathrm{mg})$ as a white foam. $\mathrm{R}_{\mathrm{f}} 0.67$ (MeOH:EtOAc:AcOH:0.88 $\mathrm{NH}_{3}: \mathrm{H}_{2} \mathrm{O}, 60$: 12:4:4:8); $[\alpha]_{D}-12.7^{\circ}\left(\mathrm{c}=0.55, \mathrm{H}_{2} \mathrm{O}\right.$). ${ }^{1} \mathrm{H}$ NMR (DMSO-d d_{6}): δ $1.0-2.5(\mathrm{~m}, 23 \mathrm{H}), 2.5-2.95(\mathrm{~m}, 1 \mathrm{H}), 2.66(\mathrm{~s}, 3 \mathrm{H}), 3.02-3.68$ (m, 11.5 H), 3.75-4.9 (m, 2.5 H), $7.45(\mathrm{~s}, 4 \mathrm{H}), 9.75-9.05(\mathrm{~m}$, $1 \mathrm{H}), 12.3$ (br s, 1 H). LRMS: m/z $480.2(\mathrm{M}+\mathrm{H})^{+}, 438.2(\mathrm{M}-$ $\left.\mathrm{CH}_{3} \mathrm{~N}_{2}+2 \mathrm{H}\right)^{+}$. Anal. $\left(\mathrm{C}_{25} \mathrm{H}_{45} \mathrm{~N}_{5} \mathrm{O}_{4} \cdot 2 \mathrm{HCl} \cdot 1.9 \mathrm{H}_{2} \mathrm{O} \cdot 0.35 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ C, H, N.

Biology

Determination of Inhibitor Potency and Selectivity. The inhibition of thrombin, trypsin, FXa, FVIIa, and plasmin were measured spectrophotometrically in 96 well plates using chromogenic substrates. All assays were carried out in a total reaction volume of $200 \mu \mathrm{~L}$. Compound dilutions in water were preincubated with enzyme at room temperature for 15 min prior to addition of chromogenic substrate. After 30 min incubation at $30^{\circ} \mathrm{C}$, the optical density was measured at 405 nm in a Thermomax plate reader (Molecular Devices,
$\mathrm{Inc})$. The percentage inhibition and IC_{50} were cal culated from triplicate assays of an eight concentration response curves. From the substrate K_{m} (previously determined by standard methods) and the IC_{50}, the K_{i} for each inhibitor was calculated from the formula $K_{i}=I C_{50} /$ $\left\{\left(1+\mathrm{S} / \mathrm{K}_{\mathrm{m}}\right)\right\}$ according to the method of Cheng and Prusoff. 35

Enzyme and chromogenic substrate concentration and supplier for each assay were as follows: thrombin (human or bovine plasma; Sigma) at final concentrations of 0.04 and $0.08 \mathrm{U} / \mathrm{mL}$, respectively; thrombin substrate-S2238 (H-D-Phe-Pip-Arg-pNA, Quadratech, U.K.), final concentration 0.1 mM ; trypsin (bovine pancreas; Sigma), final concentration $0.5 \mathrm{U} / \mathrm{mL}$; trypsin substrate-S2222 (Benz-Ile-Glu-Gly-Arg-pNA, Kabi, Quadratech), final concentration 0.1 mM ; plasmin (bovine plasma; Boehringer Mannheim, U.K.), final concentration $0.01 \mathrm{U} / \mathrm{mL}$; plasmin substrate-chromozyme PL (tosyl-Gly-Pro-Lys-pNA; Boehringer Mannheim), final concentration 0.2 mM ; FXa (bovine plasma; Boehringer Mannheim), final concentration $0.02 \mathrm{U} / \mathrm{mL}$; FXa substrate-S2222, final concentration 0.2 mM ; FVIIa (human plasma; Diagnostica Stago, Shield Diagnostics, U.K.), final concentration $0.06 \mu \mathrm{~g} / \mathrm{mL}$; FVIIa substratechromozyme t-PA (N -methylsulfonyl-D-Phe-Pro-ArgpNA; Boehringer Mannheim). Recombinant tissue factor (American Diagnostica, Alpha Labs, U.K.) was added to the FVIIa assay at a final concentration of $0.12 \mu \mathrm{~g} /$ mL . The thrombin, trypsin, and plasmin assays were performed in 50 mM HEPES and 150 mM NaCl buffer (pH 8.0) and at pH 7.5 for the F Xa assay. F or the FVIIa assay, 50 mM TRIS and 100 mM NaCl buffer (pH 7.5) was used.

Measured K_{i} values for human thrombin and human trypsin (pancreas; Calbiochem, U.K.) were determined using the same substrates/buffers as described above. Kinetic assays were performed over 15 min , after the addition of substrate (at four different concentrations) to start the reaction. K_{i} was determined from a plot of $1 / N$ against $1 / S$.

Determination of Ex Vivo Anticoagulant Activ-

 ity. Anaesthetized male Sprague-Dawley rats were given compound either by bolus iv injection dissolved in saline or by delivery directly idd dissolved in water. Appropriate vehicle controls were performed. Serial arterial blood samples were collected into one-tenth volume of 3.2% trisodium citrate and centrifuged, and plasma was collected and stored frozen until assay. Thrombin clotting times were determined using an Automated Coagulation Laboratory (ACL-300; Instrumentation Laboratories [IL], U.K.) and the IL Test TT reagent at a thrombin concentration of $6 \mathrm{U} / \mathrm{mL}$. The change in clotting time induced by the inhibitor was recorded as a multiple of the predose TT.Pharmacokinetics. Male rats (Sprague-Dawley, $\mathrm{n}=3$ per sampling time) and dogs (Beagle, $\mathrm{n}=2$) were used to determine in vivo pharmacokinetic parameters. Drugs were formulated in saline for iv administration ($1 \mathrm{~mL} / \mathrm{kg}$) by rapid bolus via the caudal vein in rat and by constant rate infusion (over 15 min) via the saphenous vein in dog. Drug solutions in water were administered orally by gavage to rat ($10 \mathrm{~mL} / \mathrm{kg}$) and dog ($1 \mathrm{~mL} / \mathrm{kg}$). Plasma was prepared from blood collected into lithium heparin tubes from an indwelling cannula
in the cotralateral saphenous vein in conscious dogs and from the vena cava in rats anaesthetized by halothane. Urine samples from dog ($0-7$ h) were collected via a urethral bladder catheter and from rat ($0-24 \mathrm{~h}$) by housing in metabolism cages. Plasma and urine drug concentrations were quantified utilizing LCMS (PerkinElmer Sciex API III+ mass spectrometer equipped with an articulated IonSpray interface). Pharmacokinetic parameters were derived by computational analysis using the programs PIVKIN and POPKIN (Dr. B. A. Wood, Sandwich) for intravenous and oral data, respectively.

Drug Assay. Plasma or urine (1 mL) was fortified with compound 8 (100 ng) as internal standard. Calibration standards were prepared covering the range $0.005-1.0 \mu \mathrm{~g} 12 / \mathrm{mL}$. Drug and internal standards were extracted from plasma or urine by mixing with pH 6.0 potassium phosphate buffer (1 mL) and percolation through an activated Certify Bond Elut cartridge [3 mL cartridge, prerinsed with methanol (2 mL) and pH 6.0 potassium phosphate buffer (2 mL)]. Following washing with methanol (2 mL) and then water (2 mL) and aspiration to dryness, the cartridge was eluted with 5\% methanolic ammonia (3 mL) and the residue was evaporated to dryness. Samples were reconstituted in 50:50 methanol/water, vortexed, centrifuged (13 000 rpm), and submitted for mass spectral analysis using LCMS.

Log D.4 $^{\text {D }}$ Determinations. These were carried out using the method devel oped by Stopher and McClean. ${ }^{36}$ Concentrations of drug in the organic and aqueous phases were determined by HPLC using a Kromasil Silica column ($25 \mathrm{~cm} \times 4.6 \mathrm{~mm}$ id), with ultraviolet detection at 210 nm . A mixture of ammonium phospate buffer ($\mathrm{pH} 3.0,0.05 \mathrm{M}$) and acetonitrile ($3: 1, \mathrm{v} / \mathrm{v}$) was used as the mobile phase with a flow rate of $1 \mathrm{~mL} / \mathrm{min}$.

Acknowledgment. We thank our following colleagues for their expert and enthusiastic technical assistance: Yvonne Ailwood, David Hardstone, Gwen Easter, Kirsty McCracken, Drew Gibson, Alan Mclnnes, Brian McRitchie, Leena Patel, Michael Pitcher, and Anthony Pomeroy. We thank Dr. J. Bordner (Pfizer Global Research and Devel opment, Groton, U.S.A.) and his staff for determining the crystal structure of 34b, (1S)-10-camphorsulfonate, by X-ray defraction. We also thank members of the Department of Physical Sciences for spectroscopic services and elemental analyses.

References

(1) For reviews on thrombin inhibitors, see (a) Lyle, T. A. Smallmolecule Inhibitors of Thrombin. Perspect. Drug Discovery Des. 1993, 1, 453-460. (b) Das, J.; Kimball, S. D.; Thrombin Active Site Inhibitors. Bioorg. Med. Chem. 1995, 3, 999-1007. (c) Vacca, J. P. Thrombosis and Coagulation. Ann. Rep. Med. Chem. 1998, 33, 81-90. (d) Sanderson, P. E. J. Small, Noncovalent Serine Protease Inhibitors. Med. Res. Rev. 1999, 19, 179-197. (e) Menear, K. Direct Thrombin Inhibitors: Current Status and Future Prospects. Exp. Opin. Invest. Drugs 1999, 8, 1373-1384. (f) Fevig, J. M.; Wexler, R. R. Anticoagulants: Thrombin and Factor Xa Inhibitors. Ann. Rep. Med. Chem. 1999, 34, 81-100. (g) Vacca, J. P. New Advances in the Discovery of Thrombin and Factor Xa Inhibitors. Curr. Opin. Chem. Biol. 2000, 4, 394-400.
(2) Adang, A. E. P.; Rewinkel, J . B. M. A New Generation of Orally Active Antithrombotics: Comparing Strategies in the GPII $\mathrm{b} / \mathrm{IIIa}$, Thrombin and Factor Xa Areas. Drugs Future 2000, 25, 369383.
(3) (a) Bush, L. R. Argatroban, A Selective, Potent Thrombin Inhibitor. Cardiovasc. Drug Rev. 1991, 9, 247-263. (b) J eske, W.; Walenga, J. M.; Lewis, B. E.; Fareed, J. Pharmacology of Argatroban. Exp. Opin. Invest. Drugs 1999, 8, 625-654.
(4) Markwardt, F. Pharmacological Approaches to Thrombin ReguIation. Ann. N. Y. Acad. Sci. 1986, 485, 204-214.
(5) Brandstetter, H.; Turk, D.; Hoeffken, H. W.; Grosse, D.; Stürzebecher, J .; Martin, P. D.; Edwards, B. F. P.; Bode, W. Refined 2.3 A X-ray Crystal Structure of Bovine Thrombin Complexes Formed with the Benzamidine and Arginine-based Trombin Inhibitors NAPAP, 4-TAPAP and MQPA. J . Mol. Biol. 1992, 226, 1085-1099.
(6) Turk, D.; Stürzebecher, J.; Bode, W.; Geometry of Binding of N^{α}-Tosylated Piperidides of m-Amidino-, p -Amidino-, and p Guanidino Phenylalanine to Thrombin and Trypsin. Fed. Eur. Biochem. Soc. 1991, 287, 133-138.
(7) Bode, W.; Turk, D.; Stürzebecher, J . Geometry of Binding of the Benzamidine- and Arginine-Based Inhibitors N ${ }^{\alpha}$-(2-Naphthyl-sulphonyl-glycyl)-DL-p-amidinophenyl-piperidine (NAPAP) and (2R,4R)-4-methyl-1-[N^{α}-(3-M ethyl-1,2,3,4-tetrahydro-8-quino-linesulphonyl)-L-argininyl]-2-piperidine carboxylic acid (MQPA) to Human α-Thrombin. Eur. J. Biochem. 1990, 193, 175-182.
(8) Hilpert, K.; Ackermann, J.; Banner, D. W.; Gast, A.; Gubernator, K.; Hadváry, P.; Labler, L.; Muller, K.; Schmid, G.; Tschopp, T. B.; van de Waterbeemd, H. Design and Synthesis of Potent and Highly Selective Thrombin Inhibitors. J. Med. Chem. 1994, 37, 3889-3901.
(9) Hauptmann, J .; Kaiser, B.; Paintz, M.; Markwardt, F. Pharmacological Characterization of a New Structural Varient of 4-Aminophenylalanine Amide-type Synthetic Thrombin Inhibitor. Pharmazie 1989, 44, 282-284.
(10) Kettner, C.; Mersinger, L.; Knabb, R. The Selective Inhibition of Thrombin by Peptides of Boroarginines. J. Biol. Chem. 1990, 265, 18 289-18 297.
(11) Wityak, J .; Earl, R. A.; Abelman, M. M.; Bethel, Y. B.; Fisher, B. N.; Kauffman, G. S.; Kettner, C. A.; Ma, P.; McMillan, J . L.; Mersinger, L. J.; Pesti, J.; Pierce, M. E.; Rankin, F. W.; Chorvat, R. J.; Confalone, P. N. Synthesis of Inhibitor DuP 714. J. Org. Chem. 1995, 60, 3717-3722.
(12) Bajusz, S.; Szell, E.; Bagdy, D.; Barabas, E.; Horvath, G.; Dioszegi, M.; Fittler, Z.; Szabo, G.; J uhasz, A.; Tomori, E.; Szilagyi, G. Highly Active and Selective Anticoagulants: D-Phe-Pro-Arg-H, a free Tripeptide Aldehyde Prone to Spontanious Inactivation, and Its StableN-Methyl Derivative, D.-MePhe-Pro-Arg-H. J. Med. Chem. 1990, 33, 1729-1735.
(13) (a) Danilewicz, J. C.; Ellis, D.; K obylecki, R. J. Preparation of N -[N-(Arylsulfonyl)-amidinophenylalanyl]hydropyridinecarboxylic acids and analogues as Antithrombotics. World Patent 95/13274. (b) Allen, M.; Abel, S. M.; Barber, C. G.; Cussans, N. J.; Danilewicz, J. C.; Ellis, D.; Hawkeswood, E.; Herron, M.; Holland, S.; Fox, D. N. A.; J ames, K.; K obylecki, R. J.; Overington, J. P.; Pandit, J.; Palmer, H.; Powling, M.; Rance, D. J.; Taylor, W.; Shepperson, N. S. The Discovery of UK-156,406-' An orally active thrombin inhibitor. Book of Abstracts, 215th ACS National Meeting, March 29-April 2, 1998, Dallas, TX; American Chemical Society: Washington, DC, 1998; Abst. MEDI200. In summary, UK-156,406 is a potent inhibitor of thrombin ($\mathrm{K}_{\mathrm{i}}=0.46 \mathrm{nM}$) and shows selectivity against related serine proteases trypsin (26 nM) and plasmin (3400 nM). Pharmacokinetic studies in dogs shows UK-156,406 to have a half-life of 0.8 h , volume of distribution of $0.9 \mathrm{~L} / \mathrm{Kg}$, clearance of $11 \mathrm{~mL} / \mathrm{min} / \mathrm{kg}$, and oral bioavailability of 45%. For a synopsis of clinical pharmacokinetic and toleration data, see refs 1d,e.
(14) Brown, A. B.; Danilewicz, J. D.; Fish, P. V. Antithrombotic N-Amidinopiperidine and Benzamidine Derivatives. World Patent 97/16444.
(15) (a) Teger-Nilsson, A.-C. E.; Bylund, R. E. World Patent 93/11152. (b) Teger-Nilsson, A.-C.; Gyzander, E.; Andersson, S.; Englund, M.; Mattsson, C.; Ulvinger, J.-C.; Gustafsson, D. In Vitro properties of Inogatran, a New Low Molecular Weight Inhibitor of Thrombin. Abstracts: XVth Congress of the International Society on Thrombosis and Haemostasis, J erusalem, I srael, J une 11-16, 1995. Thromb. Haemostasis 1995, 73, 1633. (c) Preville, P.; He, J. X.; Tarazi, M.; Siddiqui, M. A.; Cody, W. L.; Doherty, A. M. An Efficient Preparation of the Potent and Selective Pseudopeptide Thrombin Inhibitor, Inogatran. Bioorg. Med. Chem. Lett. 1997, 7, 1563-1566.
(16) Kimble, S. D.; Das, J.; Lau, W. F. European Patent 0601459.
(17) Markwardt, F.; Walsmann, P.; Kazmirowski, H. G. Untersuchungen über den Einflu β von Ring-Substitutionen auf die Thrombinhemmende Wirkung von Benzylamin- und Benzamidinderivaten. Pharmazie 1969, 24, 400-402.
(18) Bode, W.; Mayr, I.; Baumann, U.; Huber, R.; Stone, S. R.; Hofsteenge, J. The Refined 1.9 A Crystal Structure of Human α-Thrombin: Interaction with D-Phe-Pro-Arg Chloromethyl ketone and Significance of the Tyr-Pro-Pro-Trp Insertion Segment. EMBO J. 1989, 8, 3467-3475.
(19) Bernstein, F. C.; K oetzle, T. F.; Williams, G. J. B.; Meyer, E. F., J r.; Brice, M. D.; Rodgers, J. R.; Kennard, O.; Shimanouchi, T.; Tasumi, M. The Protein Data Bank: A Computer Based Archival File for Macromolecular Structures. J. Mol. Biol. 1977, 112, 535-542.
(20) Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.; Swaminathan, S.; Karplus, M. CHARMM: A Program for Macromolecular Energy, Minimization, and Dynamics Calculations J. Comput. Chem. 1982, 4, 187-217.
(21) Lu, T.; Tomczuk, B.; Illig, C. R.; Bone, R.; Murphy, L.; Spurlino, J.; Salemme, F. R.; Soll, R. M. In Vitro Evaluation and Crystallographic Analysis of a New Class of Selective, Nonamide-based Thrombin Inhibitors. Bioorg. Med. Chem. Lett. 1998, 8, 15951600.
(22) Gustke, R. F.; McCormick, P.; Ruppin, H.; Soergel, K. H.; Whalen, G. E.; Wood, C. M. Human Intestinal Potential Difference: Recording Method and Biophysical Implications. J. Physiol. 1981, 321, 571-582.
(23) Kikumoto, R.; Tamao, Y.; Ohkubo, K.; Tezuka, T.; Tonomura, S.; Okomoto, S.; Hijicata, A. Thrombin Inhibitors. 3. CarboxylContaining Amide Derivatives of N^{α}-Substituted L-Arginine. J. Med. Chem. 1980, 23, 1293-1299.
(24) Kikumoto, R.; Tamao, Y.; Tezuka, T.; Tonomura, S.; Hara, H.; Ninomiya, K.; Hijikata, A.; Okomoto, S. Selective Inhibition of Thrombin by (2R,4R)-4-M ethyl-1-[N²-[(3-methyl-1,2,3,4-tetra-hydro-8-quinolinyl)sulfonyl]-L-arginyl]-2-piperidinecarboxylic Acid. Biochemistry 1984, 23, 85-90.
(25) QUANTA 4.1; M olecular Simulations, Inc., 555 Oakmead Parkway, Sunnyvale, CA.
(26) Freedman, J .; Vaal, M. J .; Huber, E. W. The Mitsunobu Reaction of Some Indan Amino Alcohols. J. Org. Chem. 1991, 56, 670672.
(27) J ust, G.; Grozinger, K. A Selective, Mild Cleavage of Trichloroethyl Esters, Carbamates and Carbonates to Carboxylic acids, Amines, and Phenols using Zinc/THF/pH 4.2-7.2 Buffer. Synthesis 1976, 457-458.
(28) Gautier, J.-A.; Miocque, M.; Farnoux, C. C. Preparation and Synthetic Uses of Amidines. In The Chemistry of Functional Groups. TheChemistry of Amidines and Imidates; Patai, S., Ed.; J ohn Wiley and Sons: London, 1975; pp 292-296.
(29) Bergeron, R. J.; McManis, J. S. Total Synthesis of (\pm)-15Deoxyspergualin. J. Org. Chem. 1987, 52, 1700-1703.
(30) Frérot, E.; Coste, J.; Pantaloni, A.; Dufour, M.-N.; J ouin, P. PyBOP and PyBroP: Two Reagents for the difficult Coupling of the α, α-dialkyl Amino Acid, Aib. Tetrahedron 1991, 47, 259270.
(31) Beyerman, H. C.; Van Den Bosch, S.; Breuker, J. H.; Maat, L. Absolute Configuration and Optical Rotatory Dispersion of 2-Ethylpiperidine and Some of Its Derivatives in Connection with a Sector Rule. Recueil 1971, 90, 755-764.
(32) Toy, M. S.; Price, C. C. D- and L-Polyconidine. J. Am. Chem. Soc. 1960, 82, 2613-2616.
(33) Marshall, J. A.; Royce, R. D., J r. Synthetic Studies on Cembranolides. Stereosel ective Synthesis of a Crassin Acetate Synthon. J. Org. Chem. 1982, 47, 693-698.
(34) Zweifel, G.; Plamondon, J. Hydroboration of Dihydropyrans and Dihydrofurans. J. Org. Chem. 1970, 47, 898-902.
(35) Cheng, Y.-C.; Prusoff, W. H. Relationship Between the Inhibition Constant (Ki) and the Concentration of the Inhibitor that Causes 50 Percent Inhibition (IC50) of an Enzymatic Reaction. Biochem. Pharmacol. 1973, 22, 3099-3108.
(36) Stopher, D.; McClean, S. An Improved Method for the Determination of Distribution Coefficients. J. Pharm. Pharmacol. 1990, 42, 144.
J M 011133D

[^0]: * To whom correspondence should be addressed. Tel.: 441304 644589. Fax: 441304656433 . E.mail: paul_fish@sandwich.pfizer.com.
 ${ }^{+}$Senior author.
 \ddagger Department of Discovery Chemistry.
 ${ }^{\S}$ Department of Drug Metabolism.
 " Department of Discovery Biology.
 ${ }^{\perp}$ Molecular Informatics Structure and Design.

[^1]: ${ }^{\text {a }}$ Inhibition at $10^{-6} \mathrm{M} .{ }^{\mathrm{b}}$ Inhibition at $10^{-5} \mathrm{M} .{ }^{\mathrm{c}}$ Inhibition at $10^{-4} \mathrm{M}$

